
Edit this on GitHub

raspi-config is the Raspberry Pi con�guration tool originally written by Alex Bradbury. To

open the con�guration tool, type the following on the command line:

The sudo is required because you will be changing �les that you do not own as the pi user.

NOTE

If you are using the Raspberry Pi desktop then you can use the graphical Raspberry Pi
Configuration application from the Preferences menu to con�gure your Raspberry Pi.

You should then see a blue screen with options in a grey box:

NOTE

The menu shown may differ slightly.

Use the up and down arrow keys to move the highlighted selection between the options

Con�guration

The raspi-config Tool

sudo raspi-config

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

1 of 96 2/4/22, 10:47

available. Pressing the right arrow key will jump out of the Options menu and take you to

the <Select> and <Finish> buttons. Pressing left will take you back to the options.

Alternatively, you can use the Tab key to switch between these.

Generally speaking, raspi-config aims to provide the functionality to make the most

common con�guration changes. This may result in automated edits to /boot/config.txt

and various standard Linux con�guration �les. Some options require a reboot to take

effect. If you changed any of those, raspi-config will ask if you wish to reboot now when

you select the <Finish> button.

NOTE

In long lists of option values (like the list of timezone cities), you can also type a letter
to skip to that section of the list. For example, entering L will skip you to Lisbon, just
two options away from London, to save you scrolling all the way through the alphabet.

NOTE

Due to the continual development of the raspi-config tool, the list of options below
may not be completely up to date. Also please be aware that different models of
Raspberry Pi may have different options available.

The system options submenu allows you to make con�guration changes to various parts

of the boot, login and networking process, along with some other system level changes.

Allows setting of the wireless LAN SSID and passphrase.

Specify the audio output destination.

The default user on Raspberry Pi OS is pi with the password raspberry. You can change

that here. Read about other users.

List of Options

System Options

Wireless LAN

Audio

Password

Hostname

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

2 of 96 2/4/22, 10:47

Set the visible name for this Pi on a network.

From this submenu you can select whether to boot to console or desktop and whether you

need to log in or not. If you select automatic login, you will be logged in as the pi user.

Use this option to wait for a network connection before letting boot proceed.

Enable or disable the splash screen displayed at boot time

If the model of Pi permits it, you can change the behaviour of the power LED using this

option.

De�ne the default HDMI/DVI video resolution to use when the system boots without a TV

or monitor being connected. This can have an effect on RealVNC if the VNC option is

enabled.

Old TV sets had a signi�cant variation in the size of the picture they produced; some had

cabinets that overlapped the screen. TV pictures were therefore given a black border so

that none of the picture was lost; this is called overscan. Modern TVs and monitors don’t

need the border, and the signal doesn’t allow for it. If the initial text shown on the screen

disappears off the edge, you need to enable overscan to bring the border back.

Any changes will take effect after a reboot. You can have greater control over the settings

by editing con�g.txt.

On some displays, particularly monitors, disabling overscan will make the picture �ll the

whole screen and correct the resolution. For other displays, it may be necessary to leave

overscan enabled and adjust its values.

Boot / Auto login

Network at Boot

Splash Screen

Power LED

Display Options

Resolution

Underscan

Pixel Doubling

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

3 of 96 2/4/22, 10:47

Enable/disable 2x2 pixel mapping.

On the Raspberry Pi4, enable composite video. On models prior to the Raspberry Pi4,

composite video is enabled by default so this option is not displayed.

Enable or disable screen blanking.

In this submenu there are the following options to enable/disable: Camera, SSH, VNC, SPI,

I2C, Serial, 1-wire, and Remote GPIO.

Enable/disable the CSI camera interface.

Enable/disable remote command line access to your Pi using SSH.

SSH allows you to remotely access the command line of the Raspberry Pi from another

computer. SSH is disabled by default. Read more about using SSH on the SSH

documentation page. If connecting your Pi directly to a public network, you should not

enable SSH unless you have set up secure passwords for all users.

Enable/disable the RealVNC virtual network computing server.

Enable/disable SPI interfaces and automatic loading of the SPI kernel module, needed for

products such as PiFace.

Enable/disable I2C interfaces and automatic loading of the I2C kernel module.

Enable/disable shell and kernel messages on the serial connection.

Composite Video

Screen Blanking

Interfacing Options

Camera

SSH

VNC

SPI

I2C

Serial

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

4 of 96 2/4/22, 10:47

Enable/disable the Dallas 1-wire interface. This is usually used for DS18B20 temperature

sensors.

Enable or disable remote access to the GPIO pins.

On some models it is possible to overclock your Raspberry Pi’s CPU using this tool. The

overclocking you can achieve will vary; overclocking too high may result in instability.

Selecting this option shows the following warning:

Be aware that overclocking may reduce the lifetime of your Raspberry Pi. If overclocking

at a certain level causes system instability, try a more modest overclock. Hold down the

Shift key during boot to temporarily disable overclocking.

Change the amount of memory made available to the GPU.

Enable or disable a read-only �lesystem

Set the behaviour of a GPIO connected fan

The localisation submenu gives you these options to choose from: keyboard layout, time

zone, locale, and wireless LAN country code.

Select a locale, for example en_GB.UTF-8 UTF-8.

1-wire

Remote GPIO

Performance Options

Overclock

GPU Memory

Overlay File System

Fan

Localisation Options

Locale

Time Zone

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

5 of 96 2/4/22, 10:47

Select your local time zone, starting with the region, e.g. Europe, then selecting a city, e.g.

London. Type a letter to skip down the list to that point in the alphabet.

This option opens another menu which allows you to select your keyboard layout. It will

take a long time to display while it reads all the keyboard types. Changes usually take

effect immediately, but may require a reboot.

This option sets the country code for your wireless network.

This option will expand your installation to �ll the whole SD card, giving you more space to

use for �les. You will need to reboot the Raspberry Pi to make this available.

WARNING

There is no con�rmation: selecting the option begins the partition expansion
immediately.

Enable/disable the experimental GL desktop graphics drivers.

Enable/disable the experimental OpenGL Full KMS (kernel mode setting) desktop graphics

driver.

Enable/disable the experimental OpenGL Fake KMS desktop graphics driver.

Enable/disable the original legacy non-GL VideoCore desktop graphics driver.

Keyboard

WLAN Country

Advanced Options

Expand Filesystem

GL Driver

GL (Full KMS)

GL (Fake KMS)

Legacy

Compositor

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

6 of 96 2/4/22, 10:47

Enable/Display the xcompmgr composition manager

Enable or disable predictable network interface names.

Con�gure the network’s proxy settings.

On the Raspberry Pi4, you can specify whether to boot from USB or network if the SD card

isn’t inserted. See this page for more information.

On the Raspberry Pi4, you can tell the system to use the very latest boot ROM software, or

default to the factory default if the latest version causes problems.

Update this tool to the latest version.

Selecting this option shows the following text:

Use this button when you have completed your changes. You will be asked whether you

want to reboot or not. When used for the �rst time, it’s best to reboot. There will be a delay

in rebooting if you have chosen to resize your SD card.

Edit this on GitHub

Network Interface Names

Network Proxy Settings

Boot Order

Bootloader Version

Update

About raspi-con�g

This tool provides a straightforward way of doing initial configuration of the
Raspberry Pi.
Although it can be run at any time, some of the options may have difficulties
if you have heavily customised your installation.

Finish

Con�guring Networking

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

7 of 96 2/4/22, 10:47

A GUI is provided for setting up wireless connections in Raspberry Pi OS within the

Raspberry Pi Desktop. However if you are not using the Raspberry Pi Desktop, you can set

up wireless networking from the command line.

Wireless connections can be made via the network icon at the right-hand end of the menu

bar. If you are using a Pi with built-in wireless connectivity, or if a wireless dongle is

plugged in, left-clicking this icon will bring up a list of available wireless networks, as

shown below. If no networks are found, it will show the message 'No APs found -

scanning…'. Wait a few seconds without closing the menu, and it should �nd your network.

Note that on Raspberry Pi devices that support the 5GHz band (Pi3B+, Pi4, CM4, Pi400),

wireless networking is disabled for regulatory reasons, until the country code has been set.

To set the country code, open the Raspberry Pi Configuration application from the

Preferences Menu, select Localisation and set the appropriate code.

The icons on the right show whether a network is secured or not, and give an indication of

its signal strength. Click the network that you want to connect to. If it is secured, a dialogue

box will prompt you to enter the network key:

Using the Desktop

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

8 of 96 2/4/22, 10:47

Enter the key and click OK, then wait a couple of seconds. The network icon will �ash

brie�y to show that a connection is being made. When it is ready, the icon will stop �ashing

and show the signal strength.

This method is suitable if you don’t have access to the graphical user interface normally

used to set up a wireless LAN on the Raspberry Pi. It is particularly suitable for use with a

serial console cable if you don’t have access to a screen or wired Ethernet network. Note

also that no additional software is required; everything you need is already included on the

Raspberry Pi.

The quickest way to enable wireless networking is to use the command line raspi-config

tool.

sudo raspi-config

Select the Localisation Options item from the menu, then the Change wireless country

option. On a fresh install, for regulatory purposes, you will need to specify the country in

which the device is being used. Then set the SSID of the network, and the passphrase for

the network. If you do not know the SSID of the network you want to connect to, see the

next section on how to list available networks prior to running raspi-config.

Note that raspi-config does not provide a complete set of options for setting up wireless

networking; you may need to refer to the extra sections below for more details if raspi-

config fails to connect the Pi to your requested network.

To scan for wireless networks, use the command sudo iwlist wlan0 scan. This will list all

available wireless networks, along with other useful information. Look out for:

Using the Command Line

Using raspi-con�g

Getting Wireless LAN Network Details

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

9 of 96 2/4/22, 10:47

1. 'ESSID:"testing"' is the name of the wireless network.

2. 'IE: IEEE 802.11i/WPA2 Version 1' is the authentication used. In this case it’s WPA2,

the newer and more secure wireless standard which replaces WPA. This guide

should work for WPA or WPA2, but may not work for WPA2 enterprise. You’ll also

need the password for the wireless network. For most home routers, this is found on

a sticker on the back of the router. The ESSID (ssid) for the examples below is

testing and the password (psk) is testingPassword.

Open the wpa-supplicant con�guration �le in nano:

sudo nano /etc/wpa_supplicant/wpa_supplicant.conf

Go to the bottom of the �le and add the following:

The password can be con�gured either as the ASCII representation, in quotes as per the

example above, or as a pre-encrypted 32 byte hexadecimal number. You can use the

wpa_passphrase utility to generate an encrypted PSK. This takes the SSID and the

password, and generates the encrypted PSK. With the example from above, you can

generate the PSK with wpa_passphrase "testing". Then you will be asked for the

password of the wireless network (in this case testingPassword). The output is as follows:

Note that the plain text version of the code is present, but commented out. You should

delete this line from the �nal wpa_supplicant �le for extra security.

The wpa_passphrase tool requires a password with between 8 and 63 characters. To use a

more complex password, you can extract the content of a text �le and use it as input for

wpa_passphrase. Store the password in a text �le and input it to wpa_passphrase by calling

wpa_passphrase "testing" < file_where_password_is_stored. For extra security, you

should delete the file_where_password_is_stored afterwards, so there is no plain text

Adding the Network Details to your Raspberry Pi

network={
 ssid="testing"
 psk="testingPassword"
}

 network={
 ssid="testing"
 #psk="testingPassword"
 psk=131e1e221f6e06e3911a2d11ff2fac9182665c004de85300f9cac208a6a80531

 }

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

10 of 96 2/4/22, 10:47

copy of the original password on the system.

To use the wpa_passphrase--encrypted PSK, you can either copy and paste the encrypted

PSK into the wpa_supplicant.conf �le, or redirect the tool’s output to the con�guration �le

in one of two ways:

Either change to root by executing sudo su, then call wpa_passphrase "testing" >>

/etc/wpa_supplicant/wpa_supplicant.conf and enter the testing password when

asked

Or use wpa_passphrase "testing" | sudo tee -a /etc/wpa_supplicant

/wpa_supplicant.conf > /dev/null and enter the testing password when asked;

the redirection to /dev/null prevents tee from also outputting to the screen

(standard output).

If you want to use one of these two options, make sure you use >>, or use -a with tee — 

either will append text to an existing �le. Using a single chevron >, or omitting -a when

using tee, will erase all contents and then append the output to the speci�ed �le.

Now save the �le by pressing Ctrl+X, then Y, then �nally press Enter.

Recon�gure the interface with wpa_cli -i wlan0 reconfigure.

You can verify whether it has successfully connected using ifconfig wlan0. If the inet

addr �eld has an address beside it, the Raspberry Pi has connected to the network. If not,

check that your password and ESSID are correct.

On the Raspberry Pi 3B+ and Raspberry Pi 4B, you will also need to set the country code,

so that the 5GHz networking can choose the correct frequency bands. You can do this

using the raspi-config application: select the 'Localisation Options' menu, then 'Change

Wi-Fi Country'. Alternatively, you can edit the wpa_supplicant.conf �le and add the

following. (Note: you need to replace 'GB' with the 2 letter ISO code of your country. See

Wikipedia for a list of 2 letter ISO 3166-1 country codes.)

Note that with the latest Buster Raspberry Pi OS release, you must ensure that the

wpa_supplicant.conf �le contains the following information at the top:

country=GB

ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
update_config=1
country=<Insert 2 letter ISO 3166-1 country code here>

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

11 of 96 2/4/22, 10:47

If the network you are connecting to does not use a password, the wpa_supplicant entry

for the network will need to include the correct key_mgmt entry. e.g.

WARNING

You should be careful when using unsecured wireless networks.

If you are using a hidden network, an extra option in the wpa_supplicant file, scan_ssid,

may help connection.

You can verify whether it has successfully connected using ifconfig wlan0. If the inet

addr �eld has an address beside it, the Raspberry Pi has connected to the network. If not,

check your password and ESSID are correct.

On recent versions of Raspberry Pi OS, it is possible to set up multiple con�gurations for

wireless networking. For example, you could set up one for home and one for school.

For example

Using Unsecured Networks

network={
 ssid="testing"
 key_mgmt=NONE
}

Hidden Networks

network={
 ssid="yourHiddenSSID"
 scan_ssid=1
 psk="Your_wireless_network_password"
}

Adding Multiple Wireless Network Con�gurations

network={
 ssid="SchoolNetworkSSID"
 psk="passwordSchool"
 id_str="school"
}

network={
 ssid="HomeNetworkSSID"
 psk="passwordHome"
 id_str="home"

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

12 of 96 2/4/22, 10:47

If you have two networks in range, you can add the priority option to choose between

them. The network in range, with the highest priority, will be the one that is connected.

The Raspberry Pi uses dhcpcd to con�gure TCP/IP across all of its network interfaces. The

dhcpcd daemon is intended to be an all-in-one ZeroConf client for UNIX-like systems. This

includes assigning each interface an IP address, setting netmasks, and con�guring DNS

resolution via the Name Service Switch (NSS) facility.

By default, Raspberry Pi OS attempts to automatically con�gure all network interfaces by

DHCP, falling back to automatic private addresses in the range 169.254.0.0/16 if DHCP

fails. This is consistent with the behaviour of other Linux variants and of Microsoft

Windows.

If you wish to disable automatic con�guration for an interface and instead con�gure it

statically, add the details to /etc/dhcpcd.conf. For example:

You can �nd the names of the interfaces present on your system using the ip link

command.

}

network={
 ssid="HomeOneSSID"
 psk="passwordOne"
 priority=1
 id_str="homeOne"
}

network={
 ssid="HomeTwoSSID"
 psk="passwordTwo"
 priority=2
 id_str="homeTwo"
}

The DHCP Daemon

Static IP Addresses

interface eth0
static ip_address=192.168.0.4/24
static routers=192.168.0.254
static domain_name_servers=192.168.0.254 8.8.8.8

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

13 of 96 2/4/22, 10:47

Note that if you have several Raspberry Pis connected to the same network, you may �nd

it easier instead to set address reservations on your DHCP server. In this way, each Pi will

keep the same IP address, but they will all be managed in one place, making recon�guring

your network in the future more straightforward.

On Raspberry Pi systems where the graphical desktop is installed, a GUI tool called

lxplug-network is used to allow the user to make changes to the con�guration of dhcpcd,

including setting static IP addresses. The lxplug-network tool is based on dhcpcd-ui,

which was also developed by Roy Marples.

Edit this on GitHub

If you do not use a monitor or keyboard to run your Pi (known as headless), but you still

need to do some wireless setup, there is a facility to enable wireless networking and SSH

when creating a image.

Once an image is created on an SD card, by inserting it into a card reader on a Linux or

Windows machines the boot folder can be accessed. Adding certain �les to this folder will

activate certain setup features on the �rst boot of the Raspberry Pi.

You will need to de�ne a wpa_supplicant.conf �le for your particular wireless network. Put

this �le onto the boot folder of the SD card. When the Raspberry Pi boots for the �rst time,

it will copy that �le into the correct location in the Linux root �le system and use those

settings to start up wireless networking.

The Raspberry Pi’s IP address will not be visible immediately after power on, so this step is

crucial to connect to it headlessly. Depending on the OS and editor you are creating this on,

the �le could have incorrect newlines or the wrong �le extension so make sure you use an

editor that accounts for this. Linux expects the line feed (LF) newline character.

WARNING

After your Raspberry Pi is connected to power, make sure to wait a few (up to 5)
minutes for it to boot up and register on the network.

A wpa_supplicant.conf �le example:

Setting up a Headless Raspberry Pi

Con�guring Networking

ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
country=<Insert 2 letter ISO 3166-1 country code here>

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

14 of 96 2/4/22, 10:47

Where the country code should be set the two letter ISO/IEC alpha2 code for the country in

which you are using, e.g.

GB (United Kingdom)

FR (France)

DE (Germany)

US (United States)

SE (Sweden)

Here is a more elaborate example that should work for most typical wpa2 personal

networks. This template below works for 2.4ghz/5ghz hidden or not networks. The

utilization of quotes around the ssid - psk can help avoid any oddities if your network ssid

or password has special chars (! @ # $ etc)

NOTE

Some older Raspberry Pi boards and some USB wireless dongles do not support 5GHz
networks.

NOTE

With no keyboard or monitor, you will need some way of remotely accessing your
headless Raspberry Pi. For headless setup, SSH can be enabled by placing a �le
named ssh, without any extension, onto the boot folder of the SD Card. For more
information see the section on setting up an SSH server.

update_config=1

network={
 ssid="<Name of your wireless LAN>"
 psk="<Password for your wireless LAN>"
}

ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
update_config=1
country=<Insert 2 letter ISO 3166-1 country code here>

network={
 scan_ssid=1
 ssid="<Name of your wireless LAN>"
 psk="<Password for your wireless LAN>"
 proto=RSN
 key_mgmt=WPA-PSK
 pairwise=CCMP
 auth_alg=OPEN
}

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

15 of 96 2/4/22, 10:47

Edit this on GitHub

A Raspberry Pi within an Ethernet network can be used as a wireless access point, creating

a secondary network. The resulting new wireless network is entirely managed by the

Raspberry Pi.

If you wish to extend an existing Ethernet network to wireless clients, consider instead

setting up a bridged access point.

A routed wireless access point can be created using the inbuilt wireless features of the

Raspberry Pi 4, Raspberry Pi 3 or Raspberry Pi Zero W, or by using a suitable USB wireless

dongle that supports access point mode. It is possible that some USB dongles may need

slight changes to their settings. If you are having trouble with a USB wireless dongle,

please check the forums.

This documentation was tested on a Raspberry Pi 3B running a fresh installation of

Raspberry Pi OS Buster.

Ensure you have administrative access to your Raspberry Pi. The network setup will

be modi�ed as part of the installation: local access, with screen and keyboard

connected to your Raspberry Pi, is recommended.

Connect your Raspberry Pi to the Ethernet network and boot the Raspberry Pi OS.

Setting up a Routed Wireless Access Point

 +- RPi -------+
 +---+ 10.10.0.2 | +- Laptop
----+
 | | WLAN AP +-))) (((-+ WLAN Clien
t |
 | | 192.168.4.1 | | 192.168.4.
2 |
 | +-------------+
+-------------+
 +- Router ----+ |
 | Firewall | | +- PC#2 ------+
(Internet)---WAN-+ DHCP server +-LAN-+---+ 10.10.0.3 |
 | 10.10.0.1 | | +-------------+
 +-------------+ |
 | +- PC#1 ------+
 +---+ 10.10.0.4 |
 +-------------+

Before you Begin

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

16 of 96 2/4/22, 10:47

Ensure the Raspberry Pi OS on your Raspberry Pi is up-to-date and reboot if

packages were installed in the process.

Take note of the IP con�guration of the Ethernet network the Raspberry Pi is

connected to:

In this document, we assume IP network 10.10.0.0/24 is con�gured on the

Ethernet LAN, and the Raspberry Pi is going to manage IP network

192.168.4.0/24 for wireless clients.

Please select another IP network for wireless, e.g. 192.168.10.0/24, if IP

network 192.168.4.0/24 is already in use by your Ethernet LAN.

Have a wireless client (laptop, smartphone, …) ready to test your new access point.

In order to work as an access point, the Raspberry Pi needs to have the hostapd access

point software package installed:

Enable the wireless access point service and set it to start when your Raspberry Pi boots:

In order to provide network management services (DNS, DHCP) to wireless clients, the

Raspberry Pi needs to have the dnsmasq software package installed:

Finally, install netfilter-persistent and its plugin iptables-persistent. This utilty helps

by saving �rewall rules and restoring them when the Raspberry Pi boots:

Software installation is complete. We will con�gure the software packages later on.

Install AP and Management Software

sudo apt install hostapd

sudo systemctl unmask hostapd
sudo systemctl enable hostapd

sudo apt install dnsmasq

sudo DEBIAN_FRONTEND=noninteractive apt install -y netfilter-persistent iptabl
es-persistent

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

17 of 96 2/4/22, 10:47

The Raspberry Pi will run and manage a standalone wireless network. It will also route

between the wireless and Ethernet networks, providing internet access to wireless clients.

If you prefer, you can choose to skip the routing by skipping the section "Enable routing

and IP masquerading" below, and run the wireless network in complete isolation.

The Raspberry Pi runs a DHCP server for the wireless network; this requires static IP

con�guration for the wireless interface (wlan0) in the Raspberry Pi. The Raspberry Pi also

acts as the router on the wireless network, and as is customary, we will give it the �rst IP

address in the network: 192.168.4.1.

To con�gure the static IP address, edit the con�guration �le for dhcpcd with:

Go to the end of the �le and add the following:

This section con�gures the Raspberry Pi to let wireless clients access computers on the

main (Ethernet) network, and from there the internet.

NOTE

If you wish to block wireless clients from accessing the Ethernet network and the
internet, skip this section.

To enable routing, i.e. to allow tra�c to �ow from one network to the other in the Raspberry

Pi, create a �le using the following command, with the contents below:

File contents:

Set up the Network Router

De�ne the Wireless Interface IP Con�guration

sudo nano /etc/dhcpcd.conf

interface wlan0
 static ip_address=192.168.4.1/24
 nohook wpa_supplicant

Enable Routing and IP Masquerading

sudo nano /etc/sysctl.d/routed-ap.conf

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

18 of 96 2/4/22, 10:47

Enabling routing will allow hosts from network 192.168.4.0/24 to reach the LAN and the

main router towards the internet. In order to allow tra�c between clients on this foreign

wireless network and the internet without changing the con�guration of the main router,

the Raspberry Pi can substitute the IP address of wireless clients with its own IP address

on the LAN using a "masquerade" �rewall rule.

The main router will see all outgoing tra�c from wireless clients as coming from the

Raspberry Pi, allowing communication with the internet.

The Raspberry Pi will receive all incoming tra�c, substitute the IP addresses back,

and forward tra�c to the original wireless client.

This process is con�gured by adding a single �rewall rule in the Raspberry Pi:

Now save the current �rewall rules for IPv4 (including the rule above) and IPv6 to be

loaded at boot by the netfilter-persistent service:

Filtering rules are saved to the directory /etc/iptables/. If in the future you change the

con�guration of your �rewall, make sure to save the con�guration before rebooting.

The DHCP and DNS services are provided by dnsmasq. The default con�guration �le serves

as a template for all possible con�guration options, whereas we only need a few. It is

easier to start from an empty �le.

Rename the default con�guration �le and edit a new one:

Add the following to the �le and save it:

Enable IPv4 routing
net.ipv4.ip_forward=1

sudo iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

sudo netfilter-persistent save

Con�gure the DHCP and DNS services for the wireless network

sudo mv /etc/dnsmasq.conf /etc/dnsmasq.conf.orig
sudo nano /etc/dnsmasq.conf

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

19 of 96 2/4/22, 10:47

The Raspberry Pi will deliver IP addresses between 192.168.4.2 and 192.168.4.20, with a

lease time of 24 hours, to wireless DHCP clients. You should be able to reach the

Raspberry Pi under the name gw.wlan from wireless clients.

There are many more options for dnsmasq; see the default con�guration �le

(/etc/dnsmasq.conf) or the online documentation for details.

Countries around the world regulate the use of telecommunication radio frequency bands

to ensure interference-free operation. The Linux OS helps users comply with these rules by

allowing applications to be con�gured with a two-letter "WiFi country code", e.g. US for a

computer used in the United States.

In the Raspberry Pi OS, 5 GHz wireless networking is disabled until a WiFi country code

has been con�gured by the user, usually as part of the initial installation process (see

wireless con�guration pages in this section for details.)

To ensure WiFi radio is not blocked on your Raspberry Pi, execute the following command:

This setting will be automatically restored at boot time. We will de�ne an appropriate

country code in the access point software con�guration, next.

Create the hostapd con�guration �le, located at /etc/hostapd/hostapd.conf, to add the

various parameters for your new wireless network.

Add the information below to the con�guration �le. This con�guration assumes we are

using channel 7, with a network name of NameOfNetwork, and a password

interface=wlan0 # Listening interface
dhcp-range=192.168.4.2,192.168.4.20,255.255.255.0,24h
 # Pool of IP addresses served via DHCP
domain=wlan # Local wireless DNS domain
address=/gw.wlan/192.168.4.1
 # Alias for this router

Ensure Wireless Operation

sudo rfkill unblock wlan

Con�gure the AP Software

sudo nano /etc/hostapd/hostapd.conf

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

20 of 96 2/4/22, 10:47

AardvarkBadgerHedgehog. Note that the name and password should not have quotes

around them. The passphrase should be between 8 and 64 characters in length.

Note the line country_code=GB: it con�gures the computer to use the correct wireless

frequencies in the United Kingdom. Adapt this line and specify the two-letter ISO code of

your country. See Wikipedia for a list of two-letter ISO 3166-1 country codes.

To use the 5 GHz band, you can change the operations mode from hw_mode=g to

hw_mode=a. Possible values for hw_mode are:

a = IEEE 802.11a (5 GHz) (Raspberry Pi 3B+ onwards)

b = IEEE 802.11b (2.4 GHz)

g = IEEE 802.11g (2.4 GHz)

Note that when changing the hw_mode, you may need to also change the channel - see

Wikipedia for a list of allowed combinations.

Now restart your Raspberry Pi and verify that the wireless access point becomes

automatically available.

Once your Raspberry Pi has restarted, search for wireless networks with your wireless

client. The network SSID you speci�ed in �le /etc/hostapd/hostapd.conf should now be

present, and it should be accessible with the speci�ed password.

If SSH is enabled on the Raspberry Pi, it should be possible to connect to it from your

wireless client as follows, assuming the pi account is present: ssh pi@192.168.4.1 or ssh

country_code=GB
interface=wlan0
ssid=NameOfNetwork
hw_mode=g
channel=7
macaddr_acl=0
auth_algs=1
ignore_broadcast_ssid=0
wpa=2
wpa_passphrase=AardvarkBadgerHedgehog
wpa_key_mgmt=WPA-PSK
wpa_pairwise=TKIP
rsn_pairwise=CCMP

Running the new Wireless AP

sudo systemctl reboot

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

21 of 96 2/4/22, 10:47

pi@gw.wlan

If your wireless client has access to your Raspberry Pi (and the internet, if you set up

routing), congratulations on setting up your new access point!

If you encounter di�culties, contact the forums for assistance. Please refer to this page in

your message.

Edit this on GitHub

The Raspberry Pi can be used as a bridged wireless access point within an existing

Ethernet network. This will extend the network to wireless computers and devices.

If you wish to create a standalone wireless network, consider instead setting up a routed

access point.

A bridged wireless access point can be created using the inbuilt wireless features of the

Raspberry Pi 4, Raspberry Pi 3 or Raspberry Pi Zero W, or by using a suitable USB wireless

dongle that supports access point mode. It is possible that some USB dongles may need

slight changes to their settings. If you are having trouble with a USB wireless dongle,

please check the forums.

This documentation was tested on a Raspberry Pi 3B running a fresh installation of

Raspberry Pi OS Buster.

Setting up a Bridged Wireless Access Point

 +- RPi -------+
 +---+ 10.10.0.2 | +- Laptop
----+
 | | WLAN AP +-))) (((-+ WLAN Clien
t |
 | | Bridge | | 10.10.0.5
|
 | +-------------+
+-------------+
 +- Router ----+ |
 | Firewall | | +- PC#2 ------+
(Internet)---WAN-+ DHCP server +-LAN-+---+ 10.10.0.3 |
 | 10.10.0.1 | | +-------------+
 +-------------+ |
 | +- PC#1 ------+
 +---+ 10.10.0.4 |
 +-------------+

Before you Begin

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

22 of 96 2/4/22, 10:47

Ensure you have administrative access to your Raspberry Pi. The network setup will

be entirely reset as part of the installation: local access, with screen and keyboard

connected to your Raspberry Pi, is recommended.

NOTE

If installing remotely via SSH, connect to your Raspberry Pi by name rather than by IP

address, e.g. ssh pi@raspberrypi.local, as the address of your Raspberry Pi on the

network will probably change after installation. You should also be ready to add

screen and keyboard if needed in case you lose contact with your Raspberry Pi after

installation.

Connect your Raspberry Pi to the Ethernet network and boot the Raspberry Pi OS.

Ensure the Raspberry Pi OS on your Raspberry Pi is up-to-date and reboot if

packages were installed in the process.

Have a wireless client (laptop, smartphone, …) ready to test your new access point.

In order to work as a bridged access point, the Raspberry Pi needs to have the hostapd

access point software package installed:

Enable the wireless access point service and set it to start when your Raspberry Pi boots:

Software installation is complete. We will con�gure the access point software later on.

A bridge network device running on the Raspberry Pi will connect the Ethernet and wireless

networks using its built-in interfaces.

Install AP and Management Software

sudo apt install hostapd

sudo systemctl unmask hostapd
sudo systemctl enable hostapd

Setup the Network Bridge

Create a bridge device and populate the bridge

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

23 of 96 2/4/22, 10:47

Add a bridge network device named br0 by creating a �le using the following command,

with the contents below:

File contents:

In order to bridge the Ethernet network with the wireless network, �rst add the built-in

Ethernet interface (eth0) as a bridge member by creating the following �le:

File contents:

NOTE

The access point software will add the wireless interface wlan0 to the bridge when the
service starts. There is no need to create a �le for that interface. This situation is
particular to wireless LAN interfaces.

Now enable the systemd-networkd service to create and populate the bridge when your

Raspberry Pi boots:

Network interfaces that are members of a bridge device are never assigned an IP address,

since they communicate via the bridge. The bridge device itself needs an IP address, so

that you can reach your Raspberry Pi on the network.

sudo nano /etc/systemd/network/bridge-br0.netdev

[NetDev]
Name=br0
Kind=bridge

sudo nano /etc/systemd/network/br0-member-eth0.network

[Match]
Name=eth0

[Network]
Bridge=br0

sudo systemctl enable systemd-networkd

De�ne the bridge device IP con�guration

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

24 of 96 2/4/22, 10:47

dhcpcd, the DHCP client on the Raspberry Pi, automatically requests an IP address for

every active interface. So we need to block the eth0 and wlan0 interfaces from being

processed, and let dhcpcd con�gure only br0 via DHCP.

Add the following line near the beginning of the �le (above the �rst interface xxx line, if

any):

Go to the end of the �le and add the following:

With this line, interface br0 will be con�gured in accordance with the defaults via DHCP.

Save the �le to complete the IP con�guration of the machine.

Countries around the world regulate the use of telecommunication radio frequency bands

to ensure interference-free operation. The Linux OS helps users comply with these rules by

allowing applications to be con�gured with a two-letter "WiFi country code", e.g. US for a

computer used in the United States.

In the Raspberry Pi OS, 5 GHz wireless networking is disabled until a WiFi country code

has been con�gured by the user, usually as part of the initial installation process (see

wireless con�guration pages in this section for details.)

To ensure WiFi radio is not blocked on your Raspberry Pi, execute the following command:

This setting will be automatically restored at boot time. We will de�ne an appropriate

country code in the access point software con�guration, next.

sudo nano /etc/dhcpcd.conf

denyinterfaces wlan0 eth0

interface br0

Ensure Wireless Operation

sudo rfkill unblock wlan

Con�gure the AP Software

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

25 of 96 2/4/22, 10:47

Create the hostapd con�guration �le, located at /etc/hostapd/hostapd.conf, to add the

various parameters for your new wireless network.

Add the information below to the con�guration �le. This con�guration assumes we are

using channel 7, with a network name of NameOfNetwork, and a password

AardvarkBadgerHedgehog. Note that the name and password should not have quotes

around them. The passphrase should be between 8 and 64 characters in length.

Note the lines interface=wlan0 and bridge=br0: these direct hostapd to add the wlan0

interface as a bridge member to br0 when the access point starts, completing the bridge

between Ethernet and wireless.

Note the line country_code=GB: it con�gures the computer to use the correct wireless

frequencies in the United Kingdom. Adapt this line and specify the two-letter ISO code of

your country. See Wikipedia for a list of two-letter ISO 3166-1 country codes.

To use the 5 GHz band, you can change the operations mode from hw_mode=g to

hw_mode=a. Possible values for hw_mode are:

a = IEEE 802.11a (5 GHz) (Raspberry Pi 3B+ onwards)

b = IEEE 802.11b (2.4 GHz)

g = IEEE 802.11g (2.4 GHz)

Note that when changing the hw_mode, you may need to also change the channel - see

Wikipedia for a list of allowed combinations.

sudo nano /etc/hostapd/hostapd.conf

country_code=GB
interface=wlan0
bridge=br0
ssid=NameOfNetwork
hw_mode=g
channel=7
macaddr_acl=0
auth_algs=1
ignore_broadcast_ssid=0
wpa=2
wpa_passphrase=AardvarkBadgerHedgehog
wpa_key_mgmt=WPA-PSK
wpa_pairwise=TKIP
rsn_pairwise=CCMP

Run the new Wireless AP

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

26 of 96 2/4/22, 10:47

Now restart your Raspberry Pi and verify that the wireless access point becomes

automatically available.

Once your Raspberry Pi has restarted, search for wireless networks with your wireless

client. The network SSID you speci�ed in �le /etc/hostapd/hostapd.conf should now be

present, and it should be accessible with the speci�ed password.

If your wireless client has access to the local network and the internet, congratulations on

setting up your new access point!

If you encounter di�culties, contact the forums for assistance. Please refer to this page in

your message.

Edit this on GitHub

If you want your Raspberry Pi to access the Internet via a proxy server (perhaps from a

school or other workplace), you will need to con�gure your Pi to use the server before you

can get online.

You will need:

The IP address or hostname and port of your proxy server

A username and password for your proxy (if required)

You will need to set up three environment variables (http_proxy, https_proxy, and

no_proxy) so your Raspberry Pi knows how to access the proxy server.

Open a terminal window, and open the �le /etc/environment using nano:

Add the following to the /etc/environment �le to create the http_proxy variable:

sudo systemctl reboot

Using a Proxy Server

Con�guring your Raspberry Pi

sudo nano /etc/environment

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

27 of 96 2/4/22, 10:47

Replace proxyipaddress and proxyport with the IP address and port of your proxy.

NOTE

if your proxy requires a username and password, add them using the following format:

Enter the same information for the environment variable https_proxy:

Create the no_proxy environment variable, which is a comma-separated list of addresses

your Pi should not use the proxy for:

Your /etc/environment �le should now look like this:

export http_proxy="http://proxyipaddress:proxyport"

export http_proxy="http://username:password@proxyipaddress:proxyport"

export https_proxy="http://username:password@proxyipaddress:proxyport"

export no_proxy="localhost, 127.0.0.1"

export http_proxy="http://username:password@proxyipaddress:proxyport"
export https_proxy="http://username:password@proxyipaddress:proxyport"
export no_proxy="localhost, 127.0.0.1"

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

28 of 96 2/4/22, 10:47

Press Ctrl + X to save and exit.

In order for operations that run as sudo (e.g. downloading and installing software) to use

the new environment variables, you’ll need to update sudoers.

Use the following command to open sudoers:

Add the following line to the �le so sudo will use the environment variables you just

created:

Update the sudoers File

sudo visudo

Defaults env_keep+="http_proxy https_proxy no_proxy"

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

29 of 96 2/4/22, 10:47

Press Ctrl + X to save and exit.

Reboot your Raspberry Pi for the changes to take effect. You should now be able to access

the internet via your proxy server.

Edit this on GitHub

In the vast majority of cases, simply plugging your HDMI-equipped monitor into the

Raspberry Pi using a standard HDMI cable will automatically lead to the Pi using the best

resolution the monitor supports. The Raspberry Pi Zero uses a mini HDMI port, so you will

need a mini-HDMI-to-full-size-HDMI lead or adapter. On the Raspberry Pi 4 there are two

micro HDMI ports, so you will need either one or two micro-HDMI-to-full-size-HDMI leads

or adapters, depending on how many displays you wish to attach. You should connect any

HDMI leads before turning on the Raspberry Pi.

The Raspberry Pi 4 can drive up to two displays, with a resolution up to 1080p at a 60Hz

refresh rate. At 4K resolution, if you connect two displays then you are limited to a 30Hz

Reboot your Raspberry Pi

HDMI Con�guration

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

30 of 96 2/4/22, 10:47

refresh rate. You can also drive a single display at 4K with a 60Hz refresh rate: this requires

that the display is attached to the HDMI port adjacent to the USB-C power input (labelled

HDMI0). You must also enable 4Kp60 output by setting the hdmi_enable_4kp60=1 �ag in

con�g.txt. This �ag can also be set using the 'Raspberry Pi Con�guration' tool within the

desktop environment.

If you are running the 3D graphics driver (also known as the FKMS driver), then in the

Preferences menu you will �nd a graphical application for setting up standard displays,

including multi-display setups.

NOTE

The Screen Con�guration tool (arandr) is a graphical tool for selecting display modes and

setting up multiple displays. You can �nd this tool in the desktop Preferences menu, but

only if the 3D graphics driver is being used, as it is this driver that provides the required

mode setting functionality. Use the Con�gure menu option to select the screen, resolution,

and orientation. If you’re using a multi-screen setup, drag around the displays to any

position you want. When you have the required setup, click the Tick button to apply the

settings.

If you are using legacy graphics drivers, or �nd yourself in circumstances where the

Raspberry Pi may not be able to determine the best mode, or you may speci�cally wish to

set a non-default resolution, the rest of this page may be useful.

NOTE

All the commands are documented fully in the con�g.txt section of the documentation.

HDMI has two common groups: CEA (Consumer Electronics Association, the standard

typically used by TVs) and DMT (Display Monitor Timings, the standard typically used by

monitors). Each group advertises a particular set of modes, where a mode describes the

resolution, frame rate, clock rate, and aspect ratio of the output.

You can use the tvservice application on the command line to determine which modes

are supported by your device, along with other useful data:

tvservice -s displays the current HDMI status, including mode and resolution

HDMI Groups and Mode

What Modes does my Device Support?

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

31 of 96 2/4/22, 10:47

tvservice -m CEA lists all supported CEA modes

tvservice -m DMT lists all supported DMT modes

If you are using a Pi 4 with more than one display attached, then tvservice needs to be

told which device to ask for information. You can get display IDs for all attached devices by

using:

tvservice -l

You can specify which display tvservice uses by adding -v <display id> to the

tvservice command, e.g:

tvservice -v 7 -m CEA, lists all supported CEA modes for display ID 7

Setting a speci�c mode is done using the hdmi_group and hdmi_mode con�g.txt entries. The

group entry selects between CEA or DMT, and the mode selects the resolution and frame

rate. You can �nd tables of modes on the con�g.txt Video Con�guration page, but you

should use the tvservice command described above to �nd out exactly which modes

your device supports.

On the Pi 4, to specify the HDMI port, add an index identi�er to the hdmi_group or

hdmi_mode entry in con�g.txt, e.g. hdmi_mode:0 or hdmi_group:1.

There are two options for setting a custom mode: hdmi_cvt and hdmi_timings.

hdmi_cvt sets a custom Coordinated Video Timing entry, which is described fully here:

Video Con�guration

In certain rare cases it may be necessary to de�ne the exact clock requirements of the

HDMI signal. This is a fully custom mode, and it is activated by setting hdmi_group=2 and

hdmi_mode=87. You can then use the hdmi_timings con�g.txt command to set the speci�c

parameters for your display. hdmi_timings speci�es all the timings that an HDMI signal

needs to use. These timings are usually found in the datasheet of the display being used.

Setting a Speci�c HDMI Mode

Setting a Custom HDMI Mode

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

32 of 96 2/4/22, 10:47

Timing Purpose

h_active_pixels The horizontal resolution

h_sync_polarity 0 or 1 to de�ne the horizontal sync polarity

h_front_porch Number of horizontal front porch pixels

h_sync_pulse Width of horizontal sync pulse

h_back_porch Number of horizontal back porch pixels

v_active_lines The vertical resolution

v_sync_polarity 0 or 1 to de�ne the vertical sync polarity

v_front_porch Number of vertical front porch pixels

v_sync_pulse Width of vertical sync pulse

v_back_porch Number of vertical back porch pixels

v_sync_offset_a Leave at 0

v_sync_offset_b Leave at 0

pixel_rep Leave at 0

frame_rate Frame rate of mode

interlaced 0 for non-interlaced, 1 for interlaced

pixel_freq The mode pixel frequency

aspect_ratio The aspect ratio required

aspect_ratio should be one of the following:

Ratio aspect_ratio ID

4:3 1

14:9 2

16:9 3

5:4 4

hdmi_timings=<h_active_pixels> <h_sync_polarity> <h_front_porch> <h_sync_pulse
> <h_back_porch> <v_active_pixels> <h_sync_polarity> <h_front_porch> <h_sync_p
ulse> <h_back_porch> <v_active_lines> <v_sync_polarity> v_front_porch> <v_sync
_pulse> <v_back_porch> <v_sync_offset_a> <v_sync_offset_b> <pixel_rep> <frame_
rate> <interlaced> <pixel_freq> <aspect_ratio>

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

33 of 96 2/4/22, 10:47

Ratio aspect_ratio ID

16:10 5

15:9 6

21:9 7

64:27 8

For the Pi4, to specify the HDMI port, you can add an index identi�er to the con�g.txt. e.g.

hdmi_cvt:0=... or hdmi_timings:1=.... If no port identi�er is speci�ed, the settings are

applied to port 0.

In some rare cases you may need to increase the HDMI drive strength, for example when

there is speckling on the display or when you are using very long cables. There is a

con�g.txt item to do this, config_hdmi_boost, which is documented on the con�g.txt video

page.

NOTE

The Raspberry Pi 4B does not yet support config_hdmi_boost, support for this option
will be added in a future software update.

Edit this on GitHub

The options to rotate the display of your Raspberry Pi depend on which display driver

software it is running, which may also depend on which Raspberry Pi you are using.

NOTE

This is the default for Raspberry Pi 4 Model B.

If you are running the Raspberry Pi desktop then rotation is achieved by using the Screen

Configuration Utility from the desktop Preferences menu. This will bring up a graphical

representation of the display or displays connected to the Raspberry Pi. Right click on the

display you wish to rotate and select the required option.

Troubleshooting your HDMI

Rotating your Display

Fake or Full KMS Graphics Driver

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

34 of 96 2/4/22, 10:47

It is also possible to change these settings using the command line xrandr option. The

following commands give 0°, -90°, +90° and 180° rotations respectively.

Note that the --output entry speci�es to which device the rotation applies. You can

determine the device name by simply typing xrandr on the command line which will

display information, including the name, for all attached devices.

You can also use the command line to mirror the display using the --reflect option.

Re�ection can be one of 'normal' 'x', 'y' or 'xy'. This causes the output contents to be

re�ected across the speci�ed axes. For example:

If you are using the console only (no graphical desktop) then you will need to set the

appropriate kernel command line �ags. Change the console settings as described on the

this page.

NOTE

This is the default for models prior to the Raspberry Pi 4 Model B.

There are config.txt options for rotating when using the legacy display drivers.

display_hdmi_rotate is used to rotate the HDMI display, display_lcd_rotate is used to

rotate any attached LCD panel (using the DSI or DPI interface). These options rotate both

the desktop and console. Each option takes one of the following parameters :

display_*_rotate result

0 no rotation

1 rotate 90 degrees clockwise

2 rotate 180 degrees clockwise

3 rotate 270 degrees clockwise

xrandr --output HDMI-1 --rotate normal
xrandr --output HDMI-1 --rotate left
xrandr --output HDMI-1 --rotate right
xrandr --output HDMI-1 --rotate inverted

xrandr --output HDMI-1 --reflect x

Legacy Graphics Driver

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

35 of 96 2/4/22, 10:47

display_*_rotate result

0x10000 horizontal �ip

0x20000 vertical �ip

Note that the 90 and 270 degree rotation options require additional memory on the GPU,

so these will not work with the 16MB GPU split.

You can combine the rotation settings with the �ips by adding them together. You can also

have both horizontal and vertical �ips in the same way. E.g. A 180 degree rotation with a

vertical and horizontal �ip will be 0x20000 + 0x10000 + 2 = 0x30002.

Edit this on GitHub

The Raspberry Pi has up to three audio output modes: HDMI 1 and 2, if present, and a

headphone jack. You can switch between these modes at any time.

If your HDMI monitor or TV has built-in speakers, the audio can be played over the HDMI

cable, but you can switch it to a set of headphones or other speakers plugged into the

headphone jack. If your display claims to have speakers, sound is output via HDMI by

default; if not, it is output via the headphone jack. This may not be the desired output

setup, or the auto-detection is inaccurate, in which case you can manually switch the

output.

There are two ways of setting the audio output; using the Desktop volume control, or using

raspi-config command line tool.

Right-clicking the volume icon on the desktop taskbar brings up the audio output selector;

this allows you to select between the internal audio outputs. It also allows you to select

any external audio devices, such as USB sound cards and Bluetooth audio devices. A green

tick is shown against the currently selected audio output device — simply left-click the

desired output in the pop-up menu to change this. The volume control and mute operate

on the currently selected device.

Audio Con�guration

Changing the Audio Output

Using the Desktop

Using raspi-con�g

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

36 of 96 2/4/22, 10:47

Open up raspi-con�g by entering the following into the command line:

This will open the con�guration screen:

Select System Options (Currently option 1, but yours may be different) and press Enter.

Now select the Option named, Audio (Currently option S2, but yours may be different) and

press Enter:

Select your required mode, press Enter and press the right arrow key to exit the options

list, then select Finish to exit the con�guration tool.

After you have �nished modifying your audio settings, you need to restart your Raspberry

Pi in order for your changes to take effect.

In some rare cases, it is necessary to edit config.txt to force HDMI mode (as opposed to

DVI mode, which does not send sound). You can do this by editing /boot/config.txt and

setting hdmi_drive=2, then rebooting for the change to take effect.

Edit this on GitHub

You can connect your external hard disk, SSD, or USB stick to any of the USB ports on the

Raspberry Pi, and mount the �le system to access the data stored on it.

By default, your Raspberry Pi automatically mounts some of the popular �le systems such

as FAT, NTFS, and HFS+ at the /media/pi/<HARD-DRIVE-LABEL> location.

NOTE

Raspberry Pi OS Lite does not implement automounting.

To set up your storage device so that it always mounts to a speci�c location of your

choice, you must mount it manually.

sudo raspi-config

Troubleshooting your HDMI

External Storage Con�guration

Mounting a Storage Device

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

37 of 96 2/4/22, 10:47

You can mount your storage device at a speci�c folder location. It is conventional to do

this within the /mnt folder, for example /mnt/mydisk. Note that the folder must be empty.

1. Plug the storage device into a USB port on the Raspberry Pi.

2. List all the disk partitions on the Pi using the following command:

The Raspberry Pi uses mount points / and /boot. Your storage device will show up

in this list, along with any other connected storage.

3. Use the SIZE, LABEL, and MODEL columns to identify the name of the disk partition

that points to your storage device. For example, sda1.

4. The FSTYPE column contains the �lesystem type. If your storage device uses an

exFAT �le system, install the exFAT driver:

5. If your storage device uses an NTFS �le system, you will have read-only access to it.

If you want to write to the device, you can install the ntfs-3g driver:

�. Run the following command to get the location of the disk partition:

For example, /dev/sda1.

7. Create a target folder to be the mount point of the storage device. The mount point

name used in this case is mydisk. You can specify a name of your choice:

�. Mount the storage device at the mount point you created:

 sudo lsblk -o UUID,NAME,FSTYPE,SIZE,MOUNTPOINT,LABEL,MODEL

 sudo apt update
 sudo apt install exfat-fuse

 sudo apt update
 sudo apt install ntfs-3g

 sudo blkid

 sudo mkdir /mnt/mydisk

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

38 of 96 2/4/22, 10:47

9. Verify that the storage device is mounted successfully by listing the contents:

You can modify the fstab �le to de�ne the location where the storage device will be

automatically mounted when the Raspberry Pi starts up. In the fstab �le, the disk partition

is identi�ed by the universally unique identi�er (UUID).

1. Get the UUID of the disk partition:

2. Find the disk partition from the list and note the UUID. For example, 5C24-1453.

3. Open the fstab �le using a command line editor such as nano:

4. Add the following line in the fstab �le:

Replace fstype with the type of your �le system, which you found in step 2 of

'Mounting a storage device' above, for example: ntfs.

5. If the �lesystem type is FAT or NTFS, add ,umask=000 immediately after nofail - this

will allow all users full read/write access to every �le on the storage device.

Now that you have set an entry in fstab, you can start up your Raspberry Pi with or without

the storage device attached. Before you unplug the device you must either shut down the

Pi, or manually unmount it using the steps in 'Unmounting a storage device' below.

NOTE

if you do not have the storage device attached when the Pi starts, the Pi will take an

 sudo mount /dev/sda1 /mnt/mydisk

 ls /mnt/mydisk

Setting up Automatic Mounting

 sudo blkid

 sudo nano /etc/fstab

 UUID=5C24-1453 /mnt/mydisk fstype defaults,auto,users,rw,nofail 0 0

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

39 of 96 2/4/22, 10:47

extra 90 seconds to start up. You can shorten this by adding ,x-systemd.device-
timeout=30 immediately after nofail in step 4. This will change the timeout to 30
seconds, meaning the system will only wait 30 seconds before giving up trying to
mount the disk.

For more information on each Linux command, refer to the speci�c manual page using the

man command. For example, man fstab.

When the Raspberry Pi shuts down, the system takes care of unmounting the storage

device so that it is safe to unplug it. If you want to manually unmount a device, you can use

the following command:

If you receive an error that the 'target is busy', this means that the storage device was not

unmounted. If no error was displayed, you can now safely unplug the device.

The 'target is busy' message means there are �les on the storage device that are in use by

a program. To close the �les, use the following procedure.

1. Close any program which has open �les on the storage device.

2. If you have a terminal open, make sure that you are not in the folder where the

storage device is mounted, or in a sub-folder of it.

3. If you are still unable to unmount the storage device, you can use the lsof tool to

check which program has �les open on the device. You need to �rst install lsof

using apt:

To use lsof:

Unmounting a Storage Device

sudo umount /mnt/mydisk

Dealing with 'target is busy'

 sudo apt update
 sudo apt install lsof

 lsof /mnt/mydisk

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

40 of 96 2/4/22, 10:47

Edit this on GitHub

You can set your Raspberry Pi up to match your regional settings.

If you want to select a different language use raspi-con�g.

If you want to select a different keyboard use raspi-con�g.

Once again, this is something you can change using the raspi-con�g tool.

Edit this on GitHub

WARNING

This feature is intended for advanced users.

As of July 2014, the Raspberry Pi �rmware supports custom default pin con�gurations

through a user-provided Device Tree blob �le. To �nd out whether your �rmware is recent

enough, please run vcgencmd version.

During the bootup sequence, the GPIO pins go through various actions.

1. Power-on — pins default to inputs with default pulls; the default pulls for each pin are

described in the datasheet

2. Setting by the bootrom

Localising your Raspberry Pi

Changing the Language

Con�guring the Keyboard

Changing the Timezone

Changing the default pin con�guration

Device Pins During Boot Sequence

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

41 of 96 2/4/22, 10:47

3. Setting by bootcode.bin

4. Setting by dt-blob.bin (this page)

5. Setting by the GPIO command in config.txt

�. Additional �rmware pins (e.g. UARTS)

7. Kernel/Device Tree

On a soft reset, the same procedure applies, except for default pulls, which are only applied

on a power-on reset.

Note that it may take a few seconds to get from stage 1 to stage 4. During that time, the

GPIO pins may not be in the state expected by attached peripherals (as de�ned in

dtblob.bin or config.txt). Since different GPIO pins have different default pulls, you

should do one of the following for your peripheral:

Choose a GPIO pins that defaults to pulls as required by the peripheral on reset

Delay the peripheral’s startup until stage 4/5 has been reached

Add an appropriate pull-up/-down resistor

In order to compile a Device Tree source (.dts) �le into a Device Tree blob (.dtb) �le, the

Device Tree compiler must be installed by running sudo apt install device-tree-

compiler. The dtc command can then be used as follows:

Similarly, a .dtb �le can be converted back to a .dts �le, if required.

The dt-blob.bin is used to con�gure the binary blob (VideoCore) at boot time. It is not

currently used by the Linux kernel, but a kernel section will be added at a later stage, when

we recon�gure the Raspberry Pi kernel to use a dt-blob for con�guration. The dt-blob can

Providing a Custom Device Tree Blob

sudo dtc -I dts -O dtb -o /boot/dt-blob.bin dt-blob.dts

dtc -I dtb -O dts -o dt-blob.dts /boot/dt-blob.bin

Sections of the dt-blob

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

42 of 96 2/4/22, 10:47

con�gure all versions of the Raspberry Pi, including the Compute Module, to use the

alternative settings. The following sections are valid in the dt-blob:

1. videocore

This section contains all of the VideoCore blob information. All subsequent sections

must be enclosed within this section.

2. pins_*

There are a number of separate pins_* sections, based on particular Raspberry Pi

models, namely:

pins_rev1 Rev1 pin setup. There are some differences because of the moved

I2C pins.

pins_rev2 Rev2 pin setup. This includes the additional codec pins on P5.

pins_bplus1 Model B+ rev 1.1, including the full 40pin connector.

pins_bplus2 Model B+ rev 1.2, swapping the low-power and lan-run pins.

pins_aplus Model A+, lacking Ethernet.

pins_2b1 Pi 2 Model B rev 1.0; controls the SMPS via I2C0.

pins_2b2 Pi 2 Model B rev 1.1; controls the SMPS via software I2C on 42 and

43.

pins_3b1 Pi 3 Model B rev 1.0

pins_3b2 Pi 3 Model B rev 1.2

pins_3bplus Pi 3 Model B+

pins_3aplus Pi 3 Model A+

pins_pi0 The Pi Zero

pins_pi0w The Pi Zero W

pins_cm The Compute Module. The default for this is the default for the chip,

so it is a useful source of information about default pull ups/downs on the

chip.

pins_cm3 The Compute Module version 3

Each pins_* section can contain pin_config and pin_defines sections.

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

43 of 96 2/4/22, 10:47

3. pin_config

The pin_config section is used to con�gure the individual pins. Each item in this

section must be a named pin section, such as pin@p32, meaning GPIO32. There is a

special section pin@default, which contains the default settings for anything not

speci�cally named in the pin_con�g section.

4. pin@pinname

This section can contain any combination of the following items:

a. polarity

active_high

active_low

b. termination

pull_up

pull_down

no_pulling

c. startup_state

active

inactive

d. function

input

output

sdcard

i2c0

i2c1

spi

spi1

spi2

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

44 of 96 2/4/22, 10:47

smi

dpi

pcm

pwm

uart0

uart1

gp_clk

emmc

arm_jtag

e. drive_strength_mA The drive strength is used to set a strength for the pins.

Please note that you can only specify a single drive strength for the bank. <8>

and <16> are valid values.

5. pin_defines

This section is used to set speci�c VideoCore functionality to particular pins. This

enables the user to move the camera power enable pin to somewhere different, or

move the HDMI hotplug position: things that Linux does not control. Please refer to

the example DTS �le below.

It is possible to change the con�guration of the clocks through this interface, although it

can be di�cult to predict the results! The con�guration of the clocking system is very

complex. There are �ve separate PLLs, and each one has its own �xed (or variable, in the

case of PLLC) VCO frequency. Each VCO then has a number of different channels which

can be set up with a different division of the VCO frequency. Each of the clock destinations

can be con�gured to come from one of the clock channels, although there is a restricted

mapping of source to destination, so not all channels can be routed to all clock

destinations.

Here are a couple of example con�gurations that you can use to alter speci�c clocks. We

will add to this resource when requests for clock con�gurations are made.

Clock Con�guration

clock_routing {
 vco@PLLA { freq = <1966080000>; };

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

45 of 96 2/4/22, 10:47

The above will set the PLLA to a source VCO running at 1.96608GHz (the limits for this

VCO are 600MHz - 2.4GHz), change the APER channel to /4, and con�gure GPCLK0 to be

sourced from PLLA through APER. This is used to give an audio codec the 12288000Hz it

needs to produce the 48000 range of frequencies.

The example �le comes from the �rmware repository, https://github.com/raspberrypi

/�rmware/blob/master/extra/dt-blob.dts. This is the master Raspberry Pi blob, from which

others are usually derived.

Edit this on GitHub

Raspberry Pi kernels and �rmware use a Device Tree (DT) to describe the hardware

present in the Pi. These Device Trees may include DT parameters that provide a degree of

control over some onboard features. DT overlays allow optional external hardware to be

described and con�gured, and they also support parameters for more control.

The �rmware loader (start.elf and its variants) is responsible for loading the DTB (Device

Tree Blob - a machine readable DT �le). It chooses which one to load based on the board

revision number, and makes certain modi�cations to further tailor it (memory size,

Ethernet addresses etc.). This runtime customisation avoids the need for lots of DTBs with

only minor differences.

config.txt is scanned for user-provided parameters, along with any overlays and their

parameters, which are then applied. The loader examines the result to learn (for example)

which UART, if any, is to be used for the console. Finally it launches the kernel, passing a

pointer to the merged DTB.

 chan@APER { div = <4>; };
 clock@GPCLK0 { pll = "PLLA"; chan = "APER"; };
};

clock_setup {
 clock@PWM { freq = <2400000>; };
 clock@GPCLK0 { freq = <12288000>; };
 clock@GPCLK1 { freq = <25000000>; };
};

Sample Device Tree Source File

Device Trees, Overlays, and Parameters

Device Trees

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

46 of 96 2/4/22, 10:47

A Device Tree (DT) is a description of the hardware in a system. It should include the name

of the base CPU, its memory con�guration, and any peripherals (internal and external). A

DT should not be used to describe the software, although by listing the hardware modules

it does usually cause driver modules to be loaded. It helps to remember that DTs are

supposed to be OS-neutral, so anything which is Linux-speci�c probably shouldn’t be there.

A Device Tree represents the hardware con�guration as a hierarchy of nodes. Each node

may contain properties and subnodes. Properties are named arrays of bytes, which may

contain strings, numbers (big-endian), arbitrary sequences of bytes, and any combination

thereof. By analogy to a �lesystem, nodes are directories and properties are �les. The

locations of nodes and properties within the tree can be described using a path, with

slashes as separators and a single slash (/) to indicate the root.

Device Trees are usually written in a textual form known as Device Tree Source (DTS) and

stored in �les with a .dts su�x. DTS syntax is C-like, with braces for grouping and

semicolons at the end of each line. Note that DTS requires semicolons after closing

braces: think of C structs rather than functions. The compiled binary format is referred to

as Flattened Device Tree (FDT) or Device Tree Blob (DTB), and is stored in .dtb �les.

The following is a simple tree in the .dts format:

Basic DTS syntax

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

47 of 96 2/4/22, 10:47

This tree contains:

a required header: /dts-v1/.

The inclusion of another DTS �le, conventionally named *.dtsi and analogous to a

.h header �le in C - see An aside about /include/ below.

a single root node: /

a couple of child nodes: node1 and node2

some children for node1: child-node1 and child-node2

a label (cousin) and a reference to that label (&cousin): see Labels and References

below.

several properties scattered through the tree

a repeated node (/node2) - see An aside about /include/ below.

Properties are simple key-value pairs where the value can either be empty or contain an

arbitrary byte stream. While data types are not encoded in the data structure, there are a

few fundamental data representations that can be expressed in a Device Tree source �le.

/dts-v1/;
/include/ "common.dtsi";

/ {
 node1 {
 a-string-property = "A string";
 a-string-list-property = "first string", "second string";
 a-byte-data-property = [0x01 0x23 0x34 0x56];
 cousin: child-node1 {
 first-child-property;
 second-child-property = <1>;
 a-string-property = "Hello, world";
 };
 child-node2 {
 };
 };
 node2 {
 an-empty-property;
 a-cell-property = <1 2 3 4>; /* each number (cell) is a uint32 */
 child-node1 {
 my-cousin = <&cousin>;
 };
 };
};

/node2 {
 another-property-for-node2;
};

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

48 of 96 2/4/22, 10:47

Text strings (NUL-terminated) are indicated with double quotes:

Cells are 32-bit unsigned integers delimited by angle brackets:

Arbitrary byte data is delimited with square brackets, and entered in hex:

Data of differing representations can be concatenated using a comma:

Commas are also used to create lists of strings:

The /include/ directive results in simple textual inclusion, much like C’s #include directive,

but a feature of the Device Tree compiler leads to different usage patterns. Given that

nodes are named, potentially with absolute paths, it is possible for the same node to

appear twice in a DTS �le (and its inclusions). When this happens, the nodes and

properties are combined, interleaving and overwriting properties as required (later values

override earlier ones).

In the example above, the second appearance of /node2 causes a new property to be

added to the original:

string-property = "a string";

cell-property = <0xbeef 123 0xabcd1234>;

binary-property = [01 23 45 67 89 ab cd ef];

mixed-property = "a string", [01 23 45 67], <0x12345678>;

string-list = "red fish", "blue fish";

An aside about /include/

/node2 {
 an-empty-property;
 a-cell-property = <1 2 3 4>; /* each number (cell) is a uint32 */
 another-property-for-node2;
 child-node1 {
 my-cousin = <&cousin>;
 };
};

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

49 of 96 2/4/22, 10:47

It is thus possible for one .dtsi to overwrite, or provide defaults for, multiple places in a

tree.

It is often necessary for one part of the tree to refer to another, and there are four ways to

do this:

1. Path strings

Paths should be self-explanatory, by analogy with a �lesystem - /soc/i2s@7e203000

is the full path to the I2S device in BCM2835 and BCM2836. Note that although it is

easy to construct a path to a property (for example, /soc/i2s@7e203000/status), the

standard APIs don’t do that; you �rst �nd a node, then choose properties of that

node.

2. phandles

A phandle is a unique 32-bit integer assigned to a node in its phandle property. For

historical reasons, you may also see a redundant, matching linux,phandle.

phandles are numbered sequentially, starting from 1; 0 is not a valid phandle. They

are usually allocated by the DT compiler when it encounters a reference to a node in

an integer context, usually in the form of a label (see below). References to nodes

using phandles are simply encoded as the corresponding integer (cell) values; there

is no markup to indicate that they should be interpreted as phandles, as that is

application-de�ned.

3. Labels

Just as a label in C gives a name to a place in the code, a DT label assigns a name to

a node in the hierarchy. The compiler takes references to labels and converts them

into paths when used in string context (&node) and phandles in integer context

(<&node>); the original labels do not appear in the compiled output. Note that labels

contain no structure; they are just tokens in a �at, global namespace.

4. Aliases

Aliases are similar to labels, except that they do appear in the FDT output as a form

of index. They are stored as properties of the /aliases node, with each property

mapping an alias name to a path string. Although the aliases node appears in the

source, the path strings usually appear as references to labels (&node), rather then

being written out in full. DT APIs that resolve a path string to a node typically look at

the �rst character of the path, treating paths that do not start with a slash as aliases

that must �rst be converted to a path using the /aliases table.

Labels and references

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

50 of 96 2/4/22, 10:47

How to construct a Device Tree, and how best to use it to capture the con�guration of

some hardware, is a large and complex subject. There are many resources available, some

of which are listed below, but several points deserve mentioning in this document:

compatible properties are the link between the hardware description and the driver

software. When an OS encounters a node with a compatible property, it looks it up in its

database of device drivers to �nd the best match. In Linux, this usually results in the driver

module being automatically loaded, provided it has been appropriately labelled and not

blacklisted.

The status property indicates whether a device is enabled or disabled. If the status is ok,

okay or absent, then the device is enabled. Otherwise, status should be disabled, so that

the device is disabled. It can be useful to place devices in a .dtsi �le with the status set to

disabled. A derived con�guration can then include that .dtsi and set the status for the

devices which are needed to okay.

A modern SoC (System on a Chip) is a very complicated device; a complete Device Tree

could be hundreds of lines long. Taking that one step further and placing the SoC on a

board with other components only makes matters worse. To keep that manageable,

particularly if there are related devices that share components, it makes sense to put the

common elements in .dtsi �les, to be included from possibly multiple .dts �les.

When a system like Raspberry Pi also supports optional plug-in accessories such as HATs,

the problem grows. Ultimately, each possible con�guration requires a Device Tree to

describe it, but once you factor in all the different base models and the large number of

available accessories, the number of combinations starts to multiply rapidly.

What is needed is a way to describe these optional components using a partial Device

Tree, and then to be able to build a complete tree by taking a base DT and adding a

number of optional elements. You can do this, and these optional elements are called

"overlays".

Unless you want to learn how to write overlays for Raspberry Pis, you might prefer to skip

on to Part 3: Using Device Trees on Raspberry Pi.

A DT overlay comprises a number of fragments, each of which targets one node and its

subnodes. Although the concept sounds simple enough, the syntax seems rather strange

Device Tree semantics

Device Tree Overlays

Fragments

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

51 of 96 2/4/22, 10:47

at �rst:

The compatible string identi�es this as being for BCM2835, which is the base architecture

for the Raspberry Pi SoCs; if the overlay makes use of features of a Pi 4 then brcm,bcm2711

is the correct value to use, otherwise brcm,bcm2835 can be used for all Pi overlays. Then

comes the �rst (and in this case only) fragment. Fragments should be numbered

sequentially from zero. Failure to adhere to this may cause some or all of your fragments

to be missed.

Each fragment consists of two parts: a target property, identifying the node to apply the

overlay to; and the __overlay__ itself, the body of which is added to the target node. The

example above can be interpreted as if it were written like this:

(In fact, with a su�ciently new version of dtc you can write it exactly like that and get

identical output, but some homegrown tools don’t understand this format yet so any

overlay that you might want to be included in the standard Raspberry Pi OS kernel should

be written in the old format for now).

// Enable the i2s interface
/dts-v1/;
/plugin/;

/ {
 compatible = "brcm,bcm2835";

 fragment@0 {
 target = <&i2s>;
 __overlay__ {
 status = "okay";
 test_ref = <&test_label>;
 test_label: test_subnode {
 dummy;
 };
 };
 };
};

/dts-v1/;
/plugin/;

/ {
 compatible = "brcm,bcm2835";
};

&i2s {
 status = "okay";
 test_ref = <&test_label>;
 test_label: test_subnode {
 dummy;
 };
};

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

52 of 96 2/4/22, 10:47

The effect of merging that overlay with a standard Raspberry Pi base Device Tree (e.g.

bcm2708-rpi-b-plus.dtb), provided the overlay is loaded afterwards, would be to enable

the I2S interface by changing its status to okay. But if you try to compile this overlay using:

you will get an error:

This shouldn’t be too unexpected, since there is no reference to the base .dtb or .dts �le

to allow the compiler to �nd the i2s label.

Trying again, this time using the original example and adding the -@ option to allow

unresolved references (and -Hepapr to remove some clutter):

If dtc returns an error about the third line, it doesn’t have the extensions required for

overlay work. Run sudo apt install device-tree-compiler and try again - this time,

compilation should complete successfully. Note that a suitable compiler is also available in

the kernel tree as scripts/dtc/dtc, built when the dtbs make target is used:

It is interesting to dump the contents of the DTB �le to see what the compiler has

generated:

dtc -I dts -O dtb -o 2nd.dtbo 2nd-overlay.dts

Label or path i2s not found

dtc -@ -Hepapr -I dts -O dtb -o 1st.dtbo 1st-overlay.dts

make ARCH=arm dtbs

fdtdump 1st.dtbo
/dts-v1/;
// magic: 0xd00dfeed
// totalsize: 0x207 (519)
// off_dt_struct: 0x38
// off_dt_strings: 0x1c8
// off_mem_rsvmap: 0x28
// version: 17
// last_comp_version: 16
// boot_cpuid_phys: 0x0
// size_dt_strings: 0x3f
// size_dt_struct: 0x190

/ {
 compatible = "brcm,bcm2835";
 fragment@0 {
 target = <0xffffffff>;

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

53 of 96 2/4/22, 10:47

After the verbose description of the �le structure there is our fragment. But look carefully -

where we wrote &i2s it now says 0xffffffff, a clue that something strange has happened

(older versions of dtc might say 0xdeadbeef instead). The compiler has also added a

phandle property containing a unique (to this overlay) small integer to indicate that the

node has a label, and replaced all references to the label with the same small integer.

After the fragment there are three new nodes:

__symbols__ lists the labels used in the overlay (test_label here), and the path to

the labelled node. This node is the key to how unresolved symbols are dealt with.

__fixups__ contains a list of properties mapping the names of unresolved symbols

to lists of paths to cells within the fragments that need patching with the phandle of

the target node, once that target has been located. In this case, the path is to the

0xffffffff value of target, but fragments can contain other unresolved references

which would require additional �xes.

__local_fixups__ holds the locations of any references to labels that exist within

the overlay - the test_ref property. This is required because the program performing

the merge will have to ensure that phandle numbers are sequential and unique.

Back in section 1.3 it says that "the original labels do not appear in the compiled output",

but this isn’t true when using the -@ switch. Instead, every label results in a property in the

__symbols__ node, mapping a label to a path, exactly like the aliases node. In fact, the

mechanism is so similar that when resolving symbols, the Raspberry Pi loader will search

the "aliases" node in the absence of a __symbols__ node. This was useful at one time

 __overlay__ {
 status = "okay";
 test_ref = <0x00000001>;
 test_subnode {
 dummy;
 phandle = <0x00000001>;
 };
 };
 };
 __symbols__ {
 test_label = "/fragment@0/__overlay__/test_subnode";
 };
 __fixups__ {
 i2s = "/fragment@0:target:0";
 };
 __local_fixups__ {
 fragment@0 {
 __overlay__ {
 test_ref = <0x00000000>;
 };
 };
 };
};

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

54 of 96 2/4/22, 10:47

because providing su�cient aliases allowed very old versions of dtc to be used to build the

base DTB �les, but fortunately that is ancient history now.

To avoid the need for lots of Device Tree overlays, and to reduce the need for users of

peripherals to modify DTS �les, the Raspberry Pi loader supports a new feature - Device

Tree parameters. This permits small changes to the DT using named parameters, similar

to the way kernel modules receive parameters from modprobe and the kernel command

line. Parameters can be exposed by the base DTBs and by overlays, including HAT

overlays.

Parameters are de�ned in the DTS by adding an __overrides__ node to the root. It

contains properties whose names are the chosen parameter names, and whose values are

a sequence comprising a phandle (reference to a label) for the target node, and a string

indicating the target property; string, integer (cell) and boolean properties are supported.

String parameters are declared like this:

where label and property are replaced by suitable values. String parameters can cause

their target properties to grow, shrink, or be created.

Note that properties called status are treated specially; non-zero/true/yes/on values are

converted to the string "okay", while zero/false/no/off becomes "disabled".

Integer parameters are declared like this:

where label, property and offset are replaced by suitable values; the offset is speci�ed in

bytes relative to the start of the property (in decimal by default), and the preceding

separator dictates the size of the parameter. In a change from earlier implementations,

integer parameters may refer to non-existent properties or to offsets beyond the end of an

Device Tree parameters

String parameters

name = <&label>,"property";

Integer parameters

name = <&label>,"property.offset"; // 8-bit
name = <&label>,"property;offset"; // 16-bit
name = <&label>,"property:offset"; // 32-bit
name = <&label>,"property#offset"; // 64-bit

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

55 of 96 2/4/22, 10:47

existing property.

Device Tree encodes boolean values as zero-length properties; if present then the property

is true, otherwise it is false. They are de�ned like this:

Note that a property is assigned the value false by not de�ning it. Boolean parameters are

declared like this:

where label and property are replaced by suitable values.

Inverted booleans invert the input value before applying it in the same was as a regular

boolean; they are declared similarly, but use ! to indicate the inversion:

Boolean parameters can cause properties to be created or deleted, but they can’t delete a

property that already exists in the base DTB.

Byte string properties are arbitrary sequences of bytes, e.g. MAC addresses. They accept

strings of hexadecimal bytes, with or without colons between the bytes.

The [was chosen to match the DT syntax for declaring a byte string:

There are some situations where it is convenient to be able to set the same value in

multiple locations within the Device Tree. Rather than the ungainly approach of creating

Boolean parameters

boolean_property; // Set 'boolean_property' to true

name = <&label>,"property?";

name = <&label>,"property!";

Byte string parameters

mac_address = <ðernet0>,"local_mac_address[";

local_mac_address = [aa bb cc dd ee ff];

Parameters with multiple targets

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

56 of 96 2/4/22, 10:47

multiple parameters, it is possible to add multiple targets to a single parameter by

concatenating them, like this:

(example taken from the w1-gpio overlay)

NOTE

It is even possible to target properties of different types with a single parameter. You
could reasonably connect an "enable" parameter to a status string, cells containing
zero or one, and a proper boolean property.

As seen in 2.2.5, the DT parameter mechanism allows multiple targets to be patched from

the same parameter, but the utility is limited by the fact that the same value has to be

written to all locations (except for format conversion and the negation available from

inverted booleans). The addition of embedded literal assignments allows a parameter to

write arbitrary values, regardless of the parameter value supplied by the user.

Assignments appear at the end of a declaration, and are indicated by a =:

Lines 1, 2 and 4 are fairly obvious, but line 3 is more interesting because the value appears

as an integer (cell) value. The DT compiler evaluates integer expressions at compile time,

which might be convenient (particularly if macro values are used), but the cell can also

contain a reference to a label:

When the overlay is applied, the label will be resolved against the base DTB in the usual

way. Note that it is a good idea to split multi-part parameters over multiple lines like this to

make them easier to read - something that becomes more necessary with the addition of

 __overrides__ {
 gpiopin = <&w1>,"gpios:4",
 <&w1_pins>,"brcm,pins:0";
 ...
 };

Literal assignments

str_val = <&target>,"strprop=value"; // 1
int_val = <&target>,"intprop:0=42 // 2
int_val2 = <&target>,"intprop:0=",<42>; // 3
bytes = <&target>,"bytestr[=b8:27:eb:01:23:45"; // 4

// Force an LED to use a GPIO on the internal GPIO controller.
exp_led = <&led1>,"gpios:0=",<&gpio>,
 <&led1>,"gpios:4";

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

57 of 96 2/4/22, 10:47

cell value assignments like this.

Bear in mind that parameters do nothing unless they are applied - a default value in a

lookup table is ignored unless the parameter name is used without assigning a value.

Lookup tables allow parameter input values to be transformed before they are used. They

act as associative arrays, rather like switch/case statements:

A key with no =value means to use the key as the value, an = with no key before it is the

default value in the case of no match, and starting or ending the list with a comma (or an

empty key=value pair anywhere) indicates that the unmatched input value should be used

unaltered; otherwise, not �nding a match is an error.

NOTE

The comma separator within the table string after a cell integer value is implicit -
adding one explicitly creates an empty pair (see above).

NOTE

As lookup tables operate on input values and literal assignments ignore them, it’s not
possible to combine the two - characters after the closing } in the lookup declaration
are treated as an error.

The DT parameter mechanism as described has a number of limitations, including no easy

way to create arrays of integers and the inability to create new nodes. One way to

overcome some of these limitations is to conditionally include or exclude certain

fragments.

A fragment can be excluded from the �nal merge process (disabled) by renaming the

__overlay__ node to __dormant__. The parameter declaration syntax has been extended to

allow the otherwise illegal zero target phandle to indicate that the following string contains

operations at fragment or overlay scope. So far, four operations have been implemented:

Lookup tables

phonetic = <&node>,"letter{a=alpha,b=bravo,c=charlie,d,e,='tango uniform'}";
bus = <&fragment>,"target:0{0=",<&i2c0>,"1=",<&i2c1>,"}";

Overlay/fragment parameters

+<n> // Enable fragment <n>
-<n> // Disable fragment <n>
=<n> // Enable fragment <n> if the assigned parameter value is true, otherw

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

58 of 96 2/4/22, 10:47

Examples:

The i2c-rtc overlay uses this technique.

A few property names, when targeted by a parameter, get special handling. One you may

have noticed already - status - which will convert a boolean to either okay for true and

disabled for false.

Assigning to the bootargs property appends to it rather than overwriting it - this is how

settings can be added to the kernel command line.

The reg property is used to specify device addresses - the location of a memory-mapped

hardware block, the address on an I2C bus, etc. The names of child nodes should be

quali�ed with their addresses in hexadecimal, using @ as a separator:

When assigning to the reg property, the address portion of the parent node name will be

replaced with the assigned value. This can be used to prevent a node name clash when

using the same overlay multiple times - a technique used by the i2c-gpio overlay.

The name property is a pseudo-property - it shouldn’t appear in a DT, but assigning to it

causes the name of its parent node to be changed to the assigned value. Like the reg

property, this can be used to give nodes unique names.

The introduction of the Pi 4, built around the BCM2711 SoC, brought with it many changes;

some of these changes are additional interfaces, and some are modi�cations to (or

removals of) existing interfaces. There are new overlays intended speci�cally for the Pi 4

that don’t make sense on older hardware, e.g. overlays that enable the new SPI, I2C and

ise disable it
!<n> // Enable fragment <n> if the assigned parameter value is false, other
wise disable it

just_one = <0>,"+1-2"; // Enable 1, disable 2
conditional = <0>,"=3!4"; // Enable 3, disable 4 if value is true,
 // otherwise disable 3, enable 4.

Special properties

 bmp280@76 {
 reg = <0x77>;
 ...
 };

The overlay map �le

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

59 of 96 2/4/22, 10:47

UART interfaces, but other overlays don’t apply correctly even though they control features

that are still relevant on the new device.

There is therefore a need for a method of tailoring an overlay to multiple platforms with

differing hardware. Supporting them all in a single .dtbo �le would require heavy use of

hidden ("dormant") fragments and a switch to an on-demand symbol resolution

mechanism so that a missing symbol that isn’t needed doesn’t cause a failure. A simpler

solution is to add a facility to map an overlay name to one of several implementation �les

depending on the current platform.

The overlay map, which is rolling out with the switch to Linux 5.4, is a �le that gets loaded

by the �rmware at bootup. It is written in DTS source format - overlay_map.dts, compiled

to overlay_map.dtb and stored in the overlays directory.

This is an edited version of the current map �le (see the full version):

Each node has the name of an overlay that requires special handling. The properties of

each node are either platform names or one of a small number of special directives. The

current supported platforms are bcm2835, which includes all Pis built around the BCM2835,

BCM2836 and BCM2837 SoCs, and bcm2711 for Pi 4B.

A platform name with no value (an empty property) indicates that the current overlay is

compatible with the platform; for example, vc4-kms-v3d is compatible with the bcm2835

platform. A non-empty value for a platform is the name of an alternative overlay to use in

place of the requested one; asking for vc4-kms-v3d on BCM2711 results in vc4-kms-v3d-

pi4 being loaded instead. Any platform not included in an overlay’s node is not compatible

with that overlay.

/ {
 vc4-kms-v3d {
 bcm2835;
 bcm2711 = "vc4-kms-v3d-pi4";
 };

 vc4-kms-v3d-pi4 {
 bcm2711;
 };

 uart5 {
 bcm2711;
 };

 pi3-disable-bt {
 renamed = "disable-bt";
 };

 lirc-rpi {
 deprecated = "use gpio-ir";
 };
};

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

60 of 96 2/4/22, 10:47

The second example node - vc4-kms-v3d-pi4 - could be inferred from the content of vc4-

kms-v3d, but that intelligence goes into the construction of the �le, not its interpretation.

In the event that a platform is not listed for an overlay, one of the special directives may

apply:

The renamed directive indicates the new name of the overlay (which should be largely

compatible with the original), but also logs a warning about the rename.

The deprecated directive contains a brief explanatory error message which will be

logged after the common pre�x overlay '...' is deprecated:.

Remember: only exceptions need to be listed - the absence of a node for an overlay means

that the default �le should be used for all platforms.

Accessing diagnostic messages from the �rmware is covered in Debugging.

The dtoverlay and dtmerge utilities have been extended to support the map �le:

dtmerge extracts the platform name from the compatible string in the base DTB.

dtoverlay reads the compatible string from the live Device Tree at /proc/device-

tree, but you can use the -p option to supply an alternate platform name (useful for

dry runs on a different platform).

They both send errors, warnings and any debug output to STDERR.

Here are some examples of different types of properties, with parameters to modify them:

Examples

/ {
 fragment@0 {
 target-path = "/";
 __overlay__ {

 test: test_node {
 string = "hello";
 status = "disabled";
 bytes = /bits/ 8 <0x67 0x89>;
 u16s = /bits/ 16 <0xabcd 0xef01>;
 u32s = /bits/ 32 <0xfedcba98 0x76543210>;
 u64s = /bits/ 64 < 0xaaaaa5a55a5a5555 0x0000111122223333>;
 bool1; // Defaults to true
 // bool2 defaults to false
 mac = [01 23 45 67 89 ab];
 spi = <&spi0>;
 };
 };
 };

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

61 of 96 2/4/22, 10:47

For further examples, there is a large collection of overlay source �les hosted in the

Raspberry Pi Linux GitHub repository.

The overlay handling in the �rmware and the run-time overlay application using the

dtoverlay utility treat labels de�ned in an overlay as being private to that overlay. This

avoids the need to invent globally unique names for labels (which keeps them short), and it

allows the same overlay to be used multiple times without clashing (provided some tricks

are used - see Special properties).

Sometimes, however, it is very useful to be able to create a label with one overlay and use

it from another. Firmware released since 14th February 2020 has the ability to declare

some labels as being global - the __exports__ node:

 fragment@1 {
 target-path = "/";
 __overlay__ {
 frag1;
 };
 };

 fragment@2 {
 target-path = "/";
 __dormant__ {
 frag2;
 };
 };

 __overrides__ {
 string = <&test>,"string";
 enable = <&test>,"status";
 byte_0 = <&test>,"bytes.0";
 byte_1 = <&test>,"bytes.1";
 u16_0 = <&test>,"u16s;0";
 u16_1 = <&test>,"u16s;2";
 u32_0 = <&test>,"u32s:0";
 u32_1 = <&test>,"u32s:4";
 u64_0 = <&test>,"u64s#0";
 u64_1 = <&test>,"u64s#8";
 bool1 = <&test>,"bool1!";
 bool2 = <&test>,"bool2?";
 entofr = <&test>,"english",
 <&test>,"french{hello=bonjour,goodbye='au revoir',weeken
d}";
 pi_mac = <&test>,"mac[{1=b8273bfedcba,2=b8273b987654}";
 spibus = <&test>,"spi:0[0=",<&spi0>,"1=",<&spi1>,"2=",<&spi2>;

 only1 = <0>,"+1-2";
 only2 = <0>,"-1+2";
 enable1 = <0>,"=1";
 disable2 = <0>,"!2";
 };
};

Exporting labels

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

62 of 96 2/4/22, 10:47

When this overlay is applied, the loader strips out all symbols except those that have been

exported, in this case public, and rewrites the path to make it relative to the target of the

fragment containing the label. Overlays loaded after this one can then refer to &public.

Under most circumstances it shouldn’t matter which order the fragments are applied, but

for overlays that patch themselves (where the target of a fragment is a label in the overlay,

known as an intra-overlay fragment) it becomes important. In older �rmware, fragments

are applied strictly in order, top to bottom. With �rmware released since 14th February

2020, fragments are applied in two passes:

1. First the fragments that target other fragments are applied and hidden.

2. Then the regular fragments are applied.

This split is particularly important for runtime overlays, since step (i) occurs in the

dtoverlay utility, and step (ii) is performed by the kernel (which can’t handle intra-overlay

fragments).

On a Raspberry Pi it is the job of the loader (one of the start.elf images) to combine

overlays with an appropriate base device tree, and then to pass a fully resolved Device Tree

to the kernel. The base Device Trees are located alongside start.elf in the FAT partition

(/boot from Linux), named bcm2711-rpi-4-b.dtb, bcm2710-rpi-3-b-plus.dtb, etc. Note

that some models (3A+, A, A+) will use the "b" equivalents (3B+, B, B+), respectively. This

selection is automatic, and allows the same SD card image to be used in a variety of

devices.

NOTE

DT and ATAGs are mutually exclusive, and passing a DT blob to a kernel that doesn’t

 ...
 public: ...

 __exports__ {
 public; // Export the label 'public' to the base DT
 };
};

Overlay application order

Using Device Trees on Raspberry Pi

DTBs, overlays and con�g.txt

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

63 of 96 2/4/22, 10:47

understand it will cause a boot failure. The �rmware will always try to load the DT and
pass it to the kernel, since all kernels since rpi-4.4.y will not function without a DTB. You
can override this by adding device_tree= in con�g.txt, which forces the use of ATAGs,
which can be useful for simple "bare-metal" kernels.

[The �rmware used to look for a trailer appended to kernels by the mkknlimg utility, but

support for this has been withdrawn.]

The loader now supports builds using bcm2835_defcon�g, which selects the upstreamed

BCM2835 support. This con�guration will cause bcm2835-rpi-b.dtb and bcm2835-rpi-

b-plus.dtb to be built. If these �les are copied with the kernel, then the loader will attempt

to load one of those DTBs by default.

In order to manage Device Tree and overlays, the loader supports a number of config.txt

directives:

This will cause the loader to look for overlays/acme-board.dtbo in the �rmware partition,

which Raspberry Pi OS mounts on /boot. It will then search for parameters foo and level,

and assign the indicated values to them.

The loader will also search for an attached HAT with a programmed EEPROM, and load the

supporting overlay from there - either directly or by name from the "overlays" directory; this

happens without any user intervention.

There are several ways to tell that the kernel is using Device Tree:

1. The "Machine model:" kernel message during bootup has a board-speci�c value

such as "Raspberry Pi 2 Model B", rather than "BCM2709".

2. /proc/device-tree exists, and contains subdirectories and �les that exactly mirror

the nodes and properties of the DT.

With a Device Tree, the kernel will automatically search for and load modules that support

the indicated enabled devices. As a result, by creating an appropriate DT overlay for a

device you save users of the device from having to edit /etc/modules; all of the

con�guration goes in config.txt, and in the case of a HAT, even that step is unnecessary.

Note, however, that layered modules such as i2c-dev still need to be loaded explicitly.

The �ipside is that because platform devices don’t get created unless requested by the

DTB, it should no longer be necessary to blacklist modules that used to be loaded as a

result of platform devices de�ned in the board support code. In fact, current Raspberry Pi

dtoverlay=acme-board
dtparam=foo=bar,level=42

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

64 of 96 2/4/22, 10:47

OS images ship with no blacklist �les (except for some WLAN devices where multiple

drivers are available).

As described above, DT parameters are a convenient way to make small changes to a

device’s con�guration. The current base DTBs support parameters for enabling and

controlling the onboard audio, I2C, I2S and SPI interfaces without using dedicated

overlays. In use, parameters look like this:

NOTE

Multiple assignments can be placed on the same line, but ensure you don’t exceed the
80-character limit.

If you have an overlay that de�nes some parameters, they can be speci�ed either on

subsequent lines like this:

or appended to the overlay line like this:

Overlay parameters are only in scope until the next overlay is loaded. In the event of a

parameter with the same name being exported by both the overlay and the base, the

parameter in the overlay takes precedence; for clarity, it’s recommended that you avoid

doing this. To expose the parameter exported by the base DTB instead, end the current

overlay scope using:

Raspberry Pi boards have two I2C interfaces. These are nominally split: one for the ARM,

DT parameters

dtparam=audio=on,i2c_arm=on,i2c_arm_baudrate=400000,spi=on

dtoverlay=lirc-rpi
dtparam=gpio_out_pin=16
dtparam=gpio_in_pin=17
dtparam=gpio_in_pull=down

dtoverlay=lirc-rpi,gpio_out_pin=16,gpio_in_pin=17,gpio_in_pull=down

dtoverlay=

Board-speci�c labels and parameters

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

65 of 96 2/4/22, 10:47

and one for VideoCore (the "GPU"). On almost all models, i2c1 belongs to the ARM and

i2c0 to VC, where it is used to control the camera and read the HAT EEPROM. However,

there are two early revisions of the Model B that have those roles reversed.

To make it possible to use one set of overlays and parameters with all Pis, the �rmware

creates some board-speci�c DT parameters. These are:

These are aliases for i2c0, i2c1, i2c0_baudrate, and i2c1_baudrate. It is recommended

that you only use i2c_vc and i2c_vc_baudrate if you really need to - for example, if you are

programming a HAT EEPROM (which is better done using a software I2C bus using the

i2c-gpio overlay). Enabling i2c_vc can stop the Pi Camera or 7" DSI display functioning

correctly.

For people writing overlays, the same aliasing has been applied to the labels on the I2C DT

nodes. Thus, you should write:

Any overlays using the numeric variants will be modi�ed to use the new aliases.

A Raspberry Pi HAT is an add-on board with an embedded EEPROM designed for a

Raspberry Pi with a 40-pin header. The EEPROM includes any DT overlay required to enable

the board (or the name of an overlay to load from the �ling system), and this overlay can

also expose parameters.

The HAT overlay is automatically loaded by the �rmware after the base DTB, so its

parameters are accessible until any other overlays are loaded, or until the overlay scope is

ended using dtoverlay=. If for some reason you want to suppress the loading of the HAT

overlay, put dtoverlay= before any other dtoverlay or dtparam directive.

i2c/i2c_arm
i2c_vc
i2c_baudrate/i2c_arm_baudrate
i2c_vc_baudrate

fragment@0 {
 target = <&i2c_arm>;
 __overlay__ {
 status = "okay";
 };
};

HATs and Device Tree

Dynamic Device Tree

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

66 of 96 2/4/22, 10:47

As of Linux 4.4, the RPi kernels support the dynamic loading of overlays and parameters.

Compatible kernels manage a stack of overlays that are applied on top of the base DTB.

Changes are immediately re�ected in /proc/device-tree and can cause modules to be

loaded and platform devices to be created and destroyed.

The use of the word "stack" above is important - overlays can only be added and removed

at the top of the stack; changing something further down the stack requires that anything

on top of it must �rst be removed.

There are some new commands for managing overlays:

dtoverlay is a command line utility that loads and removes overlays while the system is

running, as well as listing the available overlays and displaying their help information. Use

dtoverlay -h to get usage information:

Unlike the config.txt equivalent, all parameters to an overlay must be included in the

same command line - the dtparam command is only for parameters of the base DTB.

Two points to note:

1. Command variants that change kernel state (adding and removing things) require

root privilege, so you may need to pre�x the command with sudo.

2. Only overlays and parameters applied at run-time can be unloaded - an overlay or

parameter applied by the �rmware becomes "baked in" such that it won’t be listed by

dtoverlay and can’t be removed.

The dtoverlay command

Usage:
 dtoverlay <overlay> [<param>=<val>...]
 Add an overlay (with parameters)
 dtoverlay -D [<idx>] Dry-run (prepare overlay, but don't apply -
 save it as dry-run.dtbo)
 dtoverlay -r [<overlay>] Remove an overlay (by name, index or the last)
 dtoverlay -R [<overlay>] Remove from an overlay (by name, index or all)
 dtoverlay -l List active overlays/params
 dtoverlay -a List all overlays (marking the active)
 dtoverlay -h Show this usage message
 dtoverlay -h <overlay> Display help on an overlay
 dtoverlay -h <overlay> <param>.. Or its parameters
 where <overlay> is the name of an overlay or 'dtparam' for dtparams
Options applicable to most variants:
 -d <dir> Specify an alternate location for the overlays
 (defaults to /boot/overlays or /flash/overlays)
 -v Verbose operation

The dtparam command

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

67 of 96 2/4/22, 10:47

dtparam creates and loads an overlay that has largely the same effect as using a dtparam

directive in config.txt. In usage it is largely equivalent to dtoverlay with an overlay name

of -, but there are a few differences:

1. dtparam will list the help information for all known parameters of the base DTB. Help

on the dtparam command is still available using dtparam -h.

2. When indicating a parameter for removal, only index numbers can be used (not

names).

3. Not all Linux subsystems respond to the addition of devices at runtime - I2C, SPI and

sound devices work, but some won’t.

This area is poorly documented, but here are some accumulated tips:

The creation or deletion of a device object is triggered by a node being added or

removed, or by the status of a node changing from disabled to enabled or vice versa.

Beware - the absence of a "status" property means the node is enabled.

Don’t create a node within a fragment that will overwrite an existing node in the base

DTB - the kernel will rename the new node to make it unique. If you want to change

the properties of an existing node, create a fragment that targets it.

ALSA doesn’t prevent its codecs and other components from being unloaded while

they are in use. Removing an overlay can cause a kernel exception if it deletes a

codec that is still being used by a sound card. Experimentation found that devices

are deleted in the reverse of fragment order in the overlay, so placing the node for the

card after the nodes for the components allows an orderly shutdown.

The loading of overlays at runtime is a recent addition to the kernel, and so far there is no

accepted way to do this from userspace. By hiding the details of this mechanism behind

commands the aim is to insulate users from changes in the event that a different kernel

interface becomes standardised.

Some overlays work better at run-time than others. Parts of the Device Tree are only

used at boot time - changing them using an overlay will not have any effect.

Applying or removing some overlays may cause unexpected behaviour, so it should

be done with caution. This is one of the reasons it requires sudo.

Unloading the overlay for an ALSA card can stall if something is actively using ALSA

Guidelines for writing runtime-capable overlays

Caveats

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

68 of 96 2/4/22, 10:47

- the LXPanel volume slider plugin demonstrates this effect. To enable overlays for

sound cards to be removed, the lxpanelctl utility has been given two new options -

alsastop and alsastart - and these are called from the auxiliary scripts dtoverlay-

pre and dtoverlay-post before and after overlays are loaded or unloaded,

respectively.

Removing an overlay will not cause a loaded module to be unloaded, but it may

cause the reference count of some modules to drop to zero. Running rmmod -a twice

will cause unused modules to be unloaded.

Overlays have to be removed in reverse order. The commands will allow you to

remove an earlier one, but all the intermediate ones will be removed and re-applied,

which may have unintended consequences.

Only Device Tree nodes at the top level of the tree and children of a bus node will be

probed. For nodes added at run-time there is the further limitation that the bus must

register for noti�cations of the addition and removal of children. However, there are

exceptions that break this rule and cause confusion: the kernel explicitly scans the

entire tree for some device types - clocks and interrupt controller being the two main

ones - in order to (for clocks) initialise them early and/or (for interrupt controllers) in

a particular order. This search mechanism only happens during booting and so

doesn’t work for nodes added by an overlay at run-time. It is therefore recommended

for overlays to place �xed-clock nodes in the root of the tree unless it is guaranteed

that the overlay will not be used at run-time.

As it is too time-consuming to document the individual overlays here, please refer to the

README �le found alongside the overlay .dtbo �les in /boot/overlays. It is kept up-to-

date with additions and changes.

The loader will skip over missing overlays and bad parameters, but if there are serious

errors, such as a missing or corrupt base DTB or a failed overlay merge, then the loader

will fall back to a non-DT boot. If this happens, or if your settings don’t behave as you

expect, it is worth checking for warnings or errors from the loader:

Supported overlays and parameters

Troubleshooting

Debugging

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

69 of 96 2/4/22, 10:47

Extra debugging can be enabled by adding dtdebug=1 to config.txt.

You can create a human-readable representation of the current state of DT like this:

This can be useful to see the effect of merging overlays onto the underlying tree.

If kernel modules don’t load as expected, check that they aren’t blacklisted in

/etc/modprobe.d/raspi-blacklist.conf; blacklisting shouldn’t be necessary when using

Device Tree. If that shows nothing untoward, you can also check that the module is

exporting the correct aliases by searching /lib/modules/<version>/modules.alias for the

compatible value. Otherwise, your driver is probably missing either:

or:

Failing that, depmod has failed or the updated modules haven’t been installed on the target

�lesystem.

Alongside the dtoverlay and dtparam commands is a utility for applying an overlay to a

DTB - dtmerge. To use it you �rst need to obtain your base DTB, which can be obtained in

one of two ways:

a) generate it from the live DT state in /proc/device-tree:

This will include any overlays and parameters you have applied so far, either in config.txt

or by loading them at runtime, which may or may not be what you want. Alternatively…

b) copy it from the source DTBs in /boot. This won’t include overlays and parameters, but it

sudo vcdbg log msg

dtc -I fs /proc/device-tree

.of_match_table = xxx_of_match,

MODULE_DEVICE_TABLE(of, xxx_of_match);

Testing overlays using dtmerge, dtdiff and ovmerge

dtc -I fs -O dtb -o base.dtb /proc/device-tree

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

70 of 96 2/4/22, 10:47

also won’t include any other modi�cations by the �rmware. To allow testing of all overlays,

the dtmerge utility will create some of the board-speci�c aliases ("i2c_arm", etc.), but this

means that the result of a merge will include more differences from the original DTB than

you might expect. The solution to this is to use dtmerge to make the copy:

(the - indicates an absent overlay name).

You can now try applying an overlay or parameter:

which will return:

You can also compare different overlays or parameters.

to get:

dtmerge /boot/bcm2710-rpi-3-b.dtb base.dtb -

dtmerge base.dtb merged.dtb - sd_overclock=62
dtdiff base.dtb merged.dtb

--- /dev/fd/63 2016-05-16 14:48:26.396024813 +0100
+++ /dev/fd/62 2016-05-16 14:48:26.396024813 +0100
@@ -594,7 +594,7 @@
 };

 sdhost@7e202000 {
- brcm,overclock-50 = <0x0>;
+ brcm,overclock-50 = <0x3e>;
 brcm,pio-limit = <0x1>;
 bus-width = <0x4>;
 clocks = <0x8>;

dtmerge base.dtb merged1.dtb /boot/overlays/spi1-1cs.dtbo
dtmerge base.dtb merged2.dtb /boot/overlays/spi1-2cs.dtbo
dtdiff merged1.dtb merged2.dtb

--- /dev/fd/63 2016-05-16 14:18:56.189634286 +0100
+++ /dev/fd/62 2016-05-16 14:18:56.189634286 +0100
@@ -453,7 +453,7 @@

 spi1_cs_pins {
 brcm,function = <0x1>;
- brcm,pins = <0x12>;
+ brcm,pins = <0x12 0x11>;
 phandle = <0x3e>;
 };

@@ -725,7 +725,7 @@

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

71 of 96 2/4/22, 10:47

The Utils repo includes another DT utility - ovmerge. Unlike dtmerge, ovmerge combines �le

and applies overlays in source form. Because the overlay is never compiled, labels are

preserved and the result is usually more readable. It also has a number of other tricks,

such as the ability to list the order of �le inclusion.

If you have very speci�c needs that aren’t supported by the default DTBs, or if you just

want to experiment with writing your own DTs, you can tell the loader to load an alternate

DTB �le like this:

Since the switch to the 4.4 kernel and the use of more upstream drivers, Device Tree usage

is required in Pi Linux kernels. However, for bare metal and other OSs, the method of

disabling DT usage is to add:

to config.txt.

 #size-cells = <0x0>;
 clocks = <0x13 0x1>;
 compatible = "brcm,bcm2835-aux-spi";
- cs-gpios = <0xc 0x12 0x1>;
+ cs-gpios = <0xc 0x12 0x1 0xc 0x11 0x1>;
 interrupts = <0x1 0x1d>;
 linux,phandle = <0x30>;
 phandle = <0x30>;
@@ -743,6 +743,16 @@
 spi-max-frequency = <0x7a120>;
 status = "okay";
 };
+
+ spidev@1 {
+ #address-cells = <0x1>;
+ #size-cells = <0x0>;
+ compatible = "spidev";
+ phandle = <0x41>;
+ reg = <0x1>;
+ spi-max-frequency = <0x7a120>;
+ status = "okay";
+ };
 };

 spi@7e2150C0 {

Forcing a speci�c Device Tree

device_tree=my-pi.dtb

Disabling Device Tree usage

device_tree=

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

72 of 96 2/4/22, 10:47

The loader understands a few shortcuts:

can be shortened to:

(i2c is an alias of i2c_arm, and the =on is assumed). It also still accepts the long-form

versions: device_tree_overlay and device_tree_param.

device_tree_address This is used to override the address where the �rmware loads the

device tree (not dt-blob). By default the �rmware will choose a suitable place.

device_tree_end This sets an (exclusive) limit to the loaded device tree. By default the

device tree can grow to the end of usable memory, which is almost certainly what is

required.

dtdebug If non-zero, turn on some extra logging for the �rmware’s device tree processing.

enable_uart Enable the primary/console UART (ttyS0 on a Pi 3, ttyAMA0 otherwise -

unless swapped with an overlay such as miniuart-bt). If the primary UART is ttyAMA0 then

enable_uart defaults to 1 (enabled), otherwise it defaults to 0 (disabled). This is because it

is necessary to stop the core frequency from changing which would make ttyS0 unusable,

so enable_uart=1 implies core_freq=250 (unless force_turbo=1). In some cases this is a

performance hit, so it is off by default.

overlay_prefix Speci�es a subdirectory/pre�x from which to load overlays - defaults to

"overlays/". Note the trailing "/". If desired you can add something after the �nal "/" to add a

pre�x to each �le, although this is not likely to be needed.

Further ports can be controlled by the DT, for more details see section 3.

If you’ve read through this document and not found the answer to a Device Tree problem,

there is help available. The author can usually be found on Raspberry Pi forums,

Shortcuts and syntax variants

dtparam=i2c_arm=on
dtparam=i2s=on

dtparam=i2c,i2s

Other DT commands available in con�g.txt

Further help

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

73 of 96 2/4/22, 10:47

particularly the Device Tree forum.

Edit this on GitHub

The Linux kernel accepts a command line of parameters during boot. On the Raspberry Pi,

this command line is de�ned in a �le in the boot partition, called cmdline.txt. This is a

simple text �le that can be edited using any text editor, e.g. Nano.

NOTE

We have to use sudo to edit anything in the boot partition, and all parameters in
cmdline.txt must be on the same line (no carriage returns).

The command line that was passed to the kernel at boot time can be displayed using cat

/proc/cmdline. It will not be exactly the same as that in cmdline.txt as the �rmware can

make changes to it prior to launching the kernel.

There are many kernel command line parameters, some of which are de�ned by the kernel.

Others are de�ned by code that the kernel may be using, such as the Plymouth splash

screen system.

console: de�nes the serial console. There are usually two entries:

console=serial0,115200

console=tty1

root: de�nes the location of the root �lesystem, e.g. root=/dev/mmcblk0p2 means

multimedia card block 0 partition 2.

rootfstype: de�nes what type of �lesystem the rootfs uses, e.g. rootfstype=ext4

quiet: sets the default kernel log level to KERN_WARNING, which suppresses all but very

serious log messages during boot.

The Kernel Command Line

sudo nano /boot/cmdline.txt

Command Line Options

Standard Entries

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

74 of 96 2/4/22, 10:47

The �rmware automatically adds a preferred resolution and overscan settings via an entry

such as:

This default entry can be modi�ed by duplicating the entry above manually in

/boot/cmdline.txt and making required changes to the margin parameters. In addition, it is

possible to add rotation and re�ect parameters as documented in the standard Linux

framebuffer documentation. By default the margin_* options are set from the overscan

entries in con�g.txt, if present. The �rmware can be prevented from making any KMS

speci�c changes to the command line by adding disable_fw_kms_setup=1 to config.txt

An example entry may be as follows:

Possible options for the display type, the �rst part of the video= entry, are as follows:

video option Display

HDMI-A-1
HDMI 1 (HDMI 0 on silkscreen of Pi4B, HDMI

on single HDMI boards)

HDMI-A-2 HDMI 2 (HDMI 1 on silkscreen of Pi4B)

DSI-1 DSI or DPI

Composite-1 Composite

splash: tells the boot to use a splash screen via the Plymouth module.

plymouth.ignore-serial-consoles: normally if the Plymouth module is enabled it will

prevent boot messages from appearing on any serial console which may be present.

This �ag tells Plymouth to ignore all serial consoles, making boot messages visible

again, as they would be if Plymouth was not running.

dwc_otg.lpm_enable=0: turns off Link Power Management (LPM) in the dwc_otg

driver; the dwc_otg driver is the driver for the USB controller built into the processor

used on Raspberry Pi computers.

Display Entries in FKMS and KMS modes

video=HDMI-A-1:1920x1080M@60,margin_left=0,margin_right=0,margin_top=0,margin_
bottom=0

video=HDMI-A-1:1920x1080M@60,margin_left=0,margin_right=0,margin_top=0,margin_
bottom=0,rotate=90,reflect_x`

Other Entries (not exhaustive)

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

75 of 96 2/4/22, 10:47

NOTE

On Raspberry Pi 4 this controller is disabled by default, and is only connected to
the type C power input jack; the type A USB ports on Pi 4 are driven by a separate
USB controller which is not affected by this setting.

dwc_otg.speed: sets the speed of the USB controller built into the processor on

Raspberry Pi computers. dwc_otg.speed=1 will set it to full speed (USB 1.0), which is

slower than high speed (USB 2.0). This option should not be set except during

troubleshooting of problems with USB devices.

NOTE

On Raspberry Pi 4 this controller is disabled by default, and is only connected to
the type C power input connector; the type A USB ports on Pi 4 are driven by a
separate USB controller which is not affected by this setting.

smsc95xx.turbo_mode: enables/disables the wired networking driver turbo mode.

smsc95xx.turbo_mode=N turns turbo mode off.

usbhid.mousepoll: speci�es the mouse polling interval. If you have problems with a

slow or erratic wireless mouse, setting this to 0 might help: usbhid.mousepoll=0.

Edit this on GitHub

There are two types of UART available on the Raspberry Pi - PL011 and mini UART. The

PL011 is a capable, broadly 16550-compatible UART, while the mini UART has a reduced

feature set.

All UARTs on the Raspberry Pi are 3.3V only - damage will occur if they are connected to

5V systems. An adaptor can be used to connect to 5V systems. Alternatively, low-cost USB

to 3.3V serial adaptors are available from various third parties.

The Raspberry Pi Zero, 1, 2, and 3 each contain two UARTs as follows:

Name Type

UART0 PL011

UART1 mini UART

Con�guring UARTs

Raspberry Pi Zero, 1, 2 and 3

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

76 of 96 2/4/22, 10:47

The Raspberry Pi 4B and 400 have an additional four PL011s, which are disabled by

default:

Name Type

UART0 PL011

UART1 mini UART

UART2 PL011

UART3 PL011

UART4 PL011

UART5 PL011

The �rst generation Compute Module, together with Compute Module 3 and Compute

Module 3+ each have two UARTs, while Compute Module 4 has six UARTs as described

above.

On all models of compute module, the UARTs are disabled by default and must be

explicitly enabled using a device tree overlay. You must also specify which GPIO pins to

use, for example:

On the Raspberry Pi, one UART is selected to be present on GPIO 14 (transmit) and 15

(receive) - this is the primary UART. By default, this will also be the UART on which a Linux

console may be present. Note that GPIO 14 is pin 8 on the GPIO header, while GPIO 15 is

pin 10.

The secondary UART is not normally present on the GPIO connector. By default, the

secondary UART is connected to the Bluetooth side of the combined wireless

LAN/Bluetooth controller, on models which contain this controller.

Raspberry Pi 4 and 400

CM, CM 3, CM 3+ and CM 4

dtoverlay=uart1,txd1_pin=32,rxd1_pin=33

Primary UART

Secondary UART

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

77 of 96 2/4/22, 10:47

The following table summarises the assignment of the �rst two UARTs:

Model �rst PL011 (UART0) mini UART

Raspberry Pi Zero primary secondary

Raspberry Pi Zero W
secondary

(Bluetooth)
primary

Raspberry Pi 1 primary secondary

Raspberry Pi 2 primary secondary

Raspberry Pi 3
secondary

(Bluetooth)
primary

Raspberry Pi 4
secondary

(Bluetooth)
primary

NOTE

The mini UART is disabled by default, whether it is designated primary or secondary
UART.

Linux devices on Raspberry Pi OS:

Linux device Description

/dev/ttyS0 mini UART

/dev/ttyAMA0 �rst PL011 (UART0)

/dev/serial0 primary UART

/dev/serial1 secondary UART

NOTE

/dev/serial0 and /dev/serial1 are symbolic links which point to either /dev/ttyS0 or
/dev/ttyAMA0.

In order to use the mini UART, you need to con�gure the Raspberry Pi to use a �xed VPU

core clock frequency. This is because the mini UART clock is linked to the VPU core clock,

so that when the core clock frequency changes, the UART baud rate will also change. The

Primary and Secondary UART

Mini-UART and CPU Core Frequency

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

78 of 96 2/4/22, 10:47

enable_uart and core_freq settings can be added to config.txt to change the behaviour

of the mini UART. The following table summarises the possible combinations:

Mini UART set to core clock Result

primary UART variable mini UART disabled

primary UART
�xed by setting

enable_uart=1

mini UART enabled, core

clock �xed to 250MHz, or if

force_turbo=1 is set, the

VPU turbo frequency

secondary UART variable mini UART disabled

secondary UART
�xed by setting

core_freq=250
mini UART enabled

The default state of the enable_uart �ag depends on which UART is the primary UART:

Primary UART Default state of enable_uart �ag

mini UART 0

�rst PL011 (UART0) 1

By default, the primary UART is assigned to the Linux console. If you wish to use the

primary UART for other purposes, you must recon�gure Raspberry Pi OS. This can be done

by using raspi-con�g:

1. Start raspi-con�g: sudo raspi-config.

2. Select option 3 - Interface Options.

3. Select option P6 - Serial Port.

4. At the prompt Would you like a login shell to be accessible over serial?

answer 'No'

5. At the prompt Would you like the serial port hardware to be enabled? answer

'Yes'

�. Exit raspi-con�g and reboot the Pi for changes to take effect.

Disabling the Linux Serial Console

Enabling Early Console for Linux

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

79 of 96 2/4/22, 10:47

Although the Linux kernel starts the UARTs relatively early in the boot process, it is still long

after some critical bits of infrastructure have been set up. A failure in those early stages

can be hard to diagnose without access to the kernel log messages from that time. To

enable earlycon support for one of the UARTs, add one of the following options to

cmdline.txt, depending on which UART is the primary:

For Pi 4, 400 and Compute Module 4:

For Pi 2, Pi 3 and Compute Module 3:

For Pi 1, Pi Zero and Compute Module:

The baudrate defaults to 115200bps.

NOTE

Selecting the wrong early console can prevent the Pi from booting.

Various UART Device Tree overlay de�nitions can be found in the kernel GitHub tree. The

two most useful overlays are disable-bt and miniuart-bt.

disable-bt disables the Bluetooth device and makes the �rst PL011 (UART0) the primary

UART. You must also disable the system service that initialises the modem, so it does not

connect to the UART, using sudo systemctl disable hciuart.

miniuart-bt switches the Bluetooth function to use the mini UART, and makes the �rst

PL011 (UART0) the primary UART. Note that this may reduce the maximum usable baud

rate (see mini UART limitations below). You must also set the VPU core clock to a �xed

frequency using either force_turbo=1 or core_freq=250.

earlycon=uart8250,mmio32,0xfe215040
earlycon=pl011,mmio32,0xfe201000

earlycon=uart8250,mmio32,0x3f215040
earlycon=pl011,mmio32,0x3f201000

earlycon=uart8250,mmio32,0x20215040
earlycon=pl011,mmio32,0x20201000

UARTs and Device Tree

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

80 of 96 2/4/22, 10:47

The overlays uart2, uart3, uart4, and uart5 are used to enable the four additional UARTs

on the Pi 4. There are other UART-speci�c overlays in the folder. Refer to /boot/overlays

/README for details on Device Tree overlays, or run dtoverlay -h overlay-name for

descriptions and usage information.

You add a line to the config.txt �le to apply a Device Tree overlay. Note that the

-overlay.dts part of the �lename is removed. For example:

There are some differences between PL011 UARTs and mini-UART.

The mini-UART has smaller FIFOs. Combined with the lack of �ow control, this makes it

more prone to losing characters at higher baudrates. It is also generally less capable than

a PL011, mainly due to its baud rate link to the VPU clock speed.

The particular de�ciencies of the mini UART compared to a PL011 are :

No break detection

No framing errors detection

No parity bit

No receive timeout interrupt

No DCD, DSR, DTR or RI signals

Further documentation on the mini UART can be found in the SoC peripherals document.

Edit this on GitHub

Under certain circumstances, the Raspberry Pi �rmware will display a warning icon on the

display, to indicate an issue. There are currently three icons that can be displayed.

If the power supply to the Raspberry Pi drops below 4.63V (±5%), the following icon is

dtoverlay=disable-bt

PL011 and mini-UART

Firmware Warning Icons

Undervoltage Warning

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

81 of 96 2/4/22, 10:47

displayed.

If the temperature of the SoC is between 80C and 85C, the following icon is displayed. The

ARM core(s) will be throttled back in an attempt to reduce the core temperature.

If the temperature of the SoC is over 85°C, the following icon is displayed. The ARM core(s)

and the GPU will be throttled back in an attempt to reduce the core temperature.

Over Temperature Warning (80-85°C)

Over Temperature Warning (over 85°C)

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

82 of 96 2/4/22, 10:47

Edit this on GitHub

If a Pi fails to boot for some reason, or has to shut down, in many cases an LED will be

�ashed a speci�c number of times to indicate what happened. The LED will blink for a

number of long �ashes (0 or more), then short �ashes, to indicate the exact status. In

most cases, the pattern will repeat after a 2 second gap.

Long �ashes Short �ashes Status

0 3 Generic failure to boot

0 4 start*.elf not found

0 7 Kernel image not found

0 8 SDRAM failure

0 9 Insu�cient SDRAM

0 10 In HALT state

2 1 Partition not FAT

2 2 Failed to read from partition

2 3 Extended partition not FAT

2 4
File signature/hash

mismatch - Pi 4

3 1 SPI EEPROM error - Pi 4

3 2
SPI EEPROM is write

protected - Pi 4

3 3 I2C error - Pi 4

LED Warning Flash Codes

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

83 of 96 2/4/22, 10:47

Long �ashes Short �ashes Status

4 4 Unsupported board type

4 5 Fatal �rmware error

4 6 Power failure type A

4 7 Power failure type B

Edit this on GitHub

The security of your Raspberry Pi is important. Gaps in security leave your Raspberry Pi

open to hackers who can then use it without your permission.

What level of security you need depends on how you wish to use your Raspberry Pi. For

example, if you are simply using your Raspberry Pi on your home network, behind a router

with a �rewall, then it is already quite secure by default.

However, if you wish to expose your Raspberry Pi directly to the internet, either with a

direct connection (unlikely) or by letting certain protocols through your router �rewall (e.g.

SSH), then you need to make some basic security changes.

Even if you are hidden behind a �rewall, it is sensible to take security seriously. This

documentation will describe some ways of improving the security of your Raspberry Pi.

Please note, though, that it is not exhaustive.

The default username and password is used for every single Raspberry Pi running

Raspberry Pi OS. So, if you can get access to a Raspberry Pi, and these settings have not

been changed, you have root access to that Raspberry Pi.

So the �rst thing to do is change the password. This can be done via the raspi-config

application, or from the command line.

Select option 2, and follow the instructions to change the password.

However, all raspi-config does is start up the command line passwd application, which

you can do from the command line. So instead you can type in your new password and

Securing your Raspberry Pi

Change the Default Password

sudo raspi-config

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

84 of 96 2/4/22, 10:47

con�rm it.

You can, of course, make your Raspberry Pi even more secure by also changing your

username. All Raspberry Pis come with the default username pi, so changing this will

immediately make your Raspberry Pi more secure.

To add a new user, enter:

You will be prompted to create a password for the new user.

The new user will have a home directory at /home/alice/.

To add them to the sudo group to give them sudo permissions as well as all of the other

necessary permissions:

You can check your permissions are in place (i.e. you can use sudo) by trying the following:

If it runs successfully, then you can be sure that the new account is in the sudo group.

Once you have con�rmed that the new account is working, you can delete the pi user. In

order to do this, you’ll need to �rst change the autologin user to your new user alice, with

the following:

Select option 1, S5 Boot / Auto login, and say yes to reboot. Please note that with the

current Raspberry Pi OS distribution, there are some aspects that require the pi user to be

present. If you are unsure whether you will be affected by this, then leave the pi user in

passwd

Changing your Username

sudo adduser alice

sudo usermod -a -G adm,dialout,cdrom,sudo,audio,video,plugdev,games,users,inpu
t,netdev,gpio,i2c,spi alice

sudo su - alice

sudo raspi-config

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

85 of 96 2/4/22, 10:47

place. Work is being done to reduce the dependency on the pi user.

To delete the pi user, type the following:

This command will delete the pi user but will leave the /home/pi folder. If necessary, you

can use the command below to remove the home folder for the pi user at the same time.

Note the data in this folder will be permanently deleted, so make sure any required data is

stored elsewhere.

This command will result in a warning that the group pi has no more members. The

deluser command removes both the pi user and the pi group though, so the warning can

be safely ignored.

Placing sudo in front of a command runs it as a superuser, and by default, that does not

need a password. In general, this is not a problem. However, if your Pi is exposed to the

internet and somehow becomes exploited (perhaps via a webpage exploit for example),

the attacker will be able to change things that require superuser credentials, unless you

have set sudo to require a password.

To force sudo to require a password, enter:

and change the pi entry (or whichever usernames have superuser rights) to:

Then save the �le: it will be checked for any syntax errors. If no errors were detected, the

�le will be saved and you will be returned to the shell prompt. If errors were detected, you

will be asked 'what now?' Press the 'enter' key on your keyboard: this will bring up a list of

options. You will probably want to use 'e' for '(e)dit sudoers �le again', so you can edit the

�le and �x the problem.

sudo deluser pi

sudo deluser -remove-home pi

Make sudo Require a Password

sudo visudo /etc/sudoers.d/010_pi-nopasswd

pi ALL=(ALL) PASSWD: ALL

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

86 of 96 2/4/22, 10:47

NOTE

Choosing option 'Q' will save the �le with any syntax errors still in place, which makes it
impossible for any user to use the sudo command.

An up-to-date distribution contains all the latest security �xes, so you should go ahead and

update your version of Raspberry Pi OS to the latest version.

If you are using SSH to connect to your Raspberry Pi, it can be worthwhile to add a cron

job that speci�cally updates the ssh-server. The following command, perhaps as a daily

cron job, will ensure you have the latest SSH security �xes promptly, independent of your

normal update process.

SSH is a common way of accessing a Raspberry Pi remotely. By default, logging in with

SSH requires a username/password pair, and there are ways to make this more secure. An

even more secure method is to use key based authentication.

The most important thing to do is ensure you have a very robust password. If your

Raspberry Pi is exposed to the internet, the password needs to be very secure. This will

help to avoid dictionary attacks or the like.

You can also allow or deny speci�c users by altering the sshd con�guration.

Add, edit, or append to the end of the �le the following line, which contains the usernames

you wish to allow to log in:

Updating Raspberry Pi OS

apt install openssh-server

Improving SSH Security

Improving username/password security

sudo nano /etc/ssh/sshd_config

AllowUsers alice bob

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

87 of 96 2/4/22, 10:47

You can also use DenyUsers to speci�cally stop some usernames from logging in:

After the change you will need to restart the sshd service using sudo systemctl restart

ssh or reboot so the changes take effect.

Key pairs are two cryptographically secure keys. One is private, and one is public. They can

be used to authenticate a client to an SSH server (in this case the Raspberry Pi).

The client generates two keys, which are cryptographically linked to each other. The private

key should never be released, but the public key can be freely shared. The SSH server takes

a copy of the public key, and, when a link is requested, uses this key to send the client a

challenge message, which the client will encrypt using the private key. If the server can use

the public key to decrypt this message back to the original challenge message, then the

identity of the client can be con�rmed.

Generating a key pair in Linux is done using the ssh-keygen command on the client; the

keys are stored by default in the .ssh folder in the user’s home directory. The private key

will be called id_rsa and the associated public key will be called id_rsa.pub. The key will

be 2048 bits long: breaking the encryption on a key of that length would take an extremely

long time, so it is very secure. You can make longer keys if the situation demands it. Note

that you should only do the generation process once: if repeated, it will overwrite any

previous generated keys. Anything relying on those old keys will need to be updated to the

new keys.

You will be prompted for a passphrase during key generation: this is an extra level of

security. For the moment, leave this blank.

The public key now needs to be moved on to the server: see Copy your public key to your

Raspberry Pi.

Finally, we need to disable password logins, so that all authentication is done by the key

pairs.

There are three lines that need to be changed to no, if they are not set that way already:

DenyUsers jane john

Using key-based authentication.

sudo nano /etc/ssh/sshd_config

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

88 of 96 2/4/22, 10:47

Save the �le and either restart the ssh system with sudo service ssh reload or reboot.

There are many �rewall solutions available for Linux. Most use the underlying iptables

project to provide packet �ltering. This project sits over the Linux net�ltering system.

iptables is installed by default on Raspberry Pi OS, but is not set up. Setting it up can be a

complicated task, and one project that provides a simpler interface than iptables is ufw,

which stands for 'Uncomplicated Fire Wall'. This is the default �rewall tool in Ubuntu, and

can be easily installed on your Raspberry Pi:

ufw is a fairly straightforward command line tool, although there are some GUIs available

for it. This document will describe a few of the basic command line options. Note that ufw

needs to be run with superuser privileges, so all commands are preceded with sudo. It is

also possible to use the option --dry-run any ufw commands, which indicates the results

of the command without actually making any changes.

To enable the �rewall, which will also ensure it starts up on boot, use:

To disable the �rewall, and disable start up on boot, use:

Allow a particular port to have access (we have used port 22 in our example):

Denying access on a port is also very simple (again, we have used port 22 as an example):

ChallengeResponseAuthentication no
PasswordAuthentication no
UsePAM no

Install a Firewall

sudo apt install ufw

sudo ufw enable

sudo ufw disable

sudo ufw allow 22

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

89 of 96 2/4/22, 10:47

You can also specify which service you are allowing or denying on a port. In this example,

we are denying tcp on port 22:

You can specify the service even if you do not know which port it uses. This example

allows the ssh service access through the �rewall:

The status command lists all current settings for the �rewall:

The rules can be quite complicated, allowing speci�c IP addresses to be blocked,

specifying in which direction tra�c is allowed, or limiting the number of attempts to

connect, for example to help defeat a Denial of Service (DoS) attack. You can also specify

the device rules are to be applied to (e.g. eth0, wlan0). Please refer to the ufw man page

(man ufw) for full details, but here are some examples of more sophisticated commands.

Limit login attempts on ssh port using tcp: this denies connection if an IP address has

attempted to connect six or more times in the last 30 seconds:

Deny access to port 30 from IP address 192.168.2.1

If you are using your Raspberry Pi as some sort of server, for example an ssh or a

webserver, your �rewall will have deliberate 'holes' in it to let the server tra�c through. In

these cases, Fail2ban can be useful. Fail2ban, written in Python, is a scanner that

examines the log �les produced by the Raspberry Pi, and checks them for suspicious

sudo ufw deny 22

sudo ufw deny 22/tcp

sudo ufw allow ssh

sudo ufw status

sudo ufw limit ssh/tcp

sudo ufw deny from 192.168.2.1 port 30

Installing fail2ban

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

90 of 96 2/4/22, 10:47

activity. It catches things like multiple brute-force attempts to log in, and can inform any

installed �rewall to stop further login attempts from suspicious IP addresses. It saves you

having to manually check log �les for intrusion attempts and then update the �rewall (via

iptables) to prevent them.

Install fail2ban using the following command:

On installation, Fail2ban creates a folder /etc/fail2ban in which there is a con�guration

�le called jail.conf. This needs to be copied to jail.local to enable it. Inside this

con�guration �le are a set of default options, together with options for checking speci�c

services for abnormalities. Do the following to examine/change the rules that are used for

ssh:

Add the following section to the jail.local �le. On some versions of fail2ban this section

may already exist, so update this pre-existing section if it is there.

As you can see, this section is named ssh, is enabled, examines the ssh port, �lters using

the sshd parameters, parses the /var/log/auth.log for malicious activity, and allows six

retries before the detection threshold is reached. Checking the default section, we can see

that the default banning action is:

iptables-multiport means that the Fail2ban system will run the /etc/fail2ban/action.d

/iptables-multiport.conf �le when the detection threshold is reached. There are a

number of different action con�guration �les that can be used. Multiport bans all access

on all ports.

sudo apt install fail2ban

sudo cp /etc/fail2ban/jail.conf /etc/fail2ban/jail.local
sudo nano /etc/fail2ban/jail.local

[ssh]
enabled = true
port = ssh
filter = sshd
logpath = /var/log/auth.log
maxretry = 6

Default banning action (e.g. iptables, iptables-new,
iptables-multiport, shorewall, etc) It is used to define
action_* variables. Can be overridden globally or per
section within jail.local file
banaction = iptables-multiport

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

91 of 96 2/4/22, 10:47

If you want to permanently ban an IP address after three failed attempts, you can change

the maxretry value in the [ssh] section, and set the bantime to a negative number:

Edit this on GitHub

You can con�gure your Raspberry Pi to use a screen saver or to blank the screen.

When running without a graphical desktop, Raspberry Pi OS will blank the screen after 10

minutes without user input, e.g. mouse movement or key presses.

The current setting, in seconds, can be displayed using:

To change the consoleblank setting, edit the kernel command line:

The �le /boot/cmdline.txt contains a single line of text. Add consoleblank=n to have the

console blank after n seconds of inactivity. For example consoleblank=300 will cause the

console to blank after 300 seconds, 5 minutes, of inactivity. Make sure that you add your

consoleblank option to the single line of text already in the cmdline.txt �le. To disable

screen blanking, set consoleblank=0.

You can also use the raspi-config tool to disable screen blanking. Note that the screen

blanking setting in raspi-config also controls screen blanking when the graphical desktop

is running.

[ssh]
enabled = true
port = ssh
filter = sshd
logpath = /var/log/auth.log
maxretry = 3
bantime = -1

Con�guring Screen Blanking

On Console

cat /sys/module/kernel/parameters/consoleblank

sudo nano /boot/cmdline.txt

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

92 of 96 2/4/22, 10:47

Raspberry Pi OS will blank the graphical desktop after 10 minutes without user input. You

can disable this by changing the 'Screen Blanking' option in the Raspberry Pi Con�guration

tool, which is available on the Preferences menu. Note that the 'Screen Blanking' option

also controls screen blanking when the graphical desktop is not running.

There is also a graphical screensaver available, which can be installed as follows:

This may take a few minutes.

Once this has been installed, you can �nd the Screensaver application on the Preferences

menu: it provides many options for setting up the screensaver, including disabling it

completely.

If you want to switch off the video display entirely, you can use the vcgencmd command,

Video will not come back on until you reboot or switch it back on:

Edit this on GitHub

In a basic Raspberry Pi OS install, the boot �les are stored on the �rst partition of the SD

card, which is formatted with the FAT �le system. This means that it can be read on

Windows, macOS, and Linux devices.

When the Raspberry Pi is powered on, it loads various �les from the boot partition/folder in

order to start up the various processors, then it boots the Linux kernel.

Once Linux has booted, the boot partition is mounted as /boot.

On the Desktop

sudo apt install xscreensaver

Switching off HDMI

vcgencmd display_power 0

vcgencmd display_power 1

The boot Folder

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

93 of 96 2/4/22, 10:47

Raspberry Pi documentation is copyright © 2012-2022 Raspberry Pi Ltd and is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International (CC BY-SA) licence.
Some content originates from the eLinux wiki, and is licensed under a Creative Commons Attribution-ShareAlike 3.0
Unported licence.

This is the bootloader, which is loaded by the SoC on boot, does some very basic setup,

and then loads one of the start*.elf �les. bootcode.bin is not used on the Raspberry Pi

4, because it has been replaced by boot code in the onboard EEPROM.

These are binary blobs (�rmware) that are loaded on to the VideoCore in the SoC, which

then take over the boot process. start.elf is the basic �rmware, start_x.elf includes

camera drivers and codec, start_db.elf is a debug version of the �rmware, and

start_cd.elf is a cut-down version with no support hardware blocks like codecs and 3D,

and for use when gpu_mem=16 is speci�ed in config.txt. More information on how to use

these can be found in the config.txt section.

start4.elf, start4x.elf, start4cd.elf, and start4db.elf are �rmware �les speci�c to

the Pi 4.

These are linker �les and are matched pairs with the start*.elf �les listed in the previous

section.

The kernel command line passed in to the kernel when it boots.

Contains many con�guration parameters for setting up the Pi. See the config.txt section.

Some text-based housekeeping information containing the date and git commit ID of the

distribution.

Boot Folder Contents

bootcode.bin

start.elf, start_x.elf, start_db.elf, start_cd.elf, start4.elf, start4x.elf, start4cd.elf,
start4db.elf

�xup*.dat

cmdline.txt

con�g.txt

issue.txt

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

94 of 96 2/4/22, 10:47

When this �le is present, SSH will be enabled on boot. The contents don’t

matter, it can be empty. SSH is otherwise disabled by default.

This is the �le to con�gure wireless network settings (if the hardware is

capable of it). Edit the country code and the network part to �t your case.

More information on how to use this �le can be found in the

wireless/headless section.

There are various Device Tree blob �les, which have the extension .dtb.

These contain the hardware de�nitions of the various models of Raspberry

Pi, and are used on boot to set up the kernel according to which Pi model is

detected.

The boot folder will contain various kernel image �les, used for the different

Raspberry Pi models:

Filename Processor
Raspberry Pi
model

Notes

kernel.img BCM2835 Pi Zero, Pi 1

kernel7.img
BCM2836,

BCM2837

Pi Zero 2 W, Pi 2,

Pi 3

Later Pi 2 uses

the BCM2837

kernel7l.img BCM2711 Pi 4, Pi 400

Large Physical

Address

Extension (LPAE)

kernel8.img
BCM2837,

BCM2711

Pi Zero 2 W, Pi 2,

Pi 3, Pi 4, Pi 400

Beta 64 bit

kernel. Raspberry

Pi 2 with

BCM2836 does

not support 64-

bit.

ssh or ssh.txt

wpa_supplicant.conf

Device Tree �les

Kernel Files

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

95 of 96 2/4/22, 10:47

NOTE

The architecture reported by lscpu is armv7l for systems running a 32-
bit kernel (i.e. everything except kernel8.img), and aarch64 for systems
running a 64-bit kernel. The l in the armv7l case refers to the
architecture being little-endian, not LPAE as is indicated by the l in the
kernel7l.img �lename.

The overlays sub-folder contains Device Tree overlays. These are used to

con�gure various hardware devices that may be attached to the system, for

example the Raspberry Pi Touch Display or third-party sound boards. These

overlays are selected using entries in config.txt — see 'Device Trees,

overlays and parameters, part 2' for more info.

The Overlays Folder

Raspberry Pi Documentation - Configuration https://www.raspberrypi.com/documentation/computers...

96 of 96 2/4/22, 10:47

